
The future of artificial
intelligence in medicine

www.fmai-hub.com



CONTENTS

PERSPECTIVE
Immersive virtual reality to relieve exercise-induced pain caused by aerobic cycling

EDITORIAL
A critical appraisal on cancer prognosis and artificial intelligence

COMMENTARY
The role of artificial intelligence in tackling COVID-19

RESEARCH ARTICLE
Salivary microRNAs identified by small RNA sequencing and machine learning as potential
biomarkers of alcohol dependence

REVIEW
Use and efficacy of virtual, augmented, or mixed reality technology for chronic pain: a
systematic review

SHORT COMMUNICATION
Multiomics, virtual reality and artificial intelligence in heart failure

www.fmai-hub.com



Short Communication

For reprint orders, please contact: reprints@futuremedicine.com

Multiomics, virtual reality and artificial
intelligence in heart failure

Patrick A Gladding*,1 , Suzanne Loader1, Kevin Smith2, Erica Zarate3, Saras Green3, Silas
Villas-Boas3, Phillip Shepherd4, Purvi Kakadiya4, Will Hewitt5, Eric Thorstensen6, Christine
Keven6, Margaret Coe6, Bahareh Nakisa7, Tan Vuong7, Mohammad Naim Rastgoo8, Mia
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Aim: Multiomics delivers more biological insight than targeted investigations. We applied multiomics to
patients with heart failure (HF) and reduced ejection fraction (HFrEF), with machine learning applied
to advanced ECG (AECG) and echocardiography artificial intelligence (Echo AI). Patients & methods: In
total, 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas
chromatography–mass spectrometry and solid-phase microextraction volatilomics in plasma and urine.
HFrEF was defined using left ventricular (LV) global longitudinal strain, EF and N-terminal pro hormone
BNP. AECG and Echo AI were performed over 5 min, with a subset of patients undergoing a virtual reality
mental stress test. Results: A-ECG had similar diagnostic accuracy as N-terminal pro hormone BNP for
HFrEF (area under the curve = 0.95, 95% CI: 0.85–0.99), and correlated with global longitudinal strain (r = -
0.77, p < 0.0001), while Echo AI-generated measurements correlated well with manually measured LV end
diastolic volume r = 0.77, LV end systolic volume r = 0.8, LVEF r = 0.71, indexed left atrium volume r = 0.71
and indexed LV mass r = 0.6, p < 0.005. AI-LVEF and other HFrEF biomarkers had a similar discrimination
for HFrEF (area under the curve AI-LVEF = 0.88; 95% CI: -0.03 to 0.15; p = 0.19). Virtual reality mental stress
test elicited arrhythmic biomarkers on AECG and indicated blunted autonomic responsiveness (alpha 2
of RR interval variability, p = 1 × 10-4) in HFrEF. Conclusion: Multiomics-related machine learning shows
promise for the assessment of HF.

Lay abstract: Multiomics is the integration of multiple sources of health information, for
example, genomic, metabolite, etc. This delivers more insight than targeted single investigations
and provides an ability to perceive subtle individual differences between people. In this study we applied
multiomics to patients with heart failure (HF) using DNA sequencing, metabolomics and machine learning
applied to ECG echocardiography. We demonstrated significant differences between subsets of patients
with HF using these methods. We also showed that machine learning has significant diagnostic potential
in identifying HF patients more efficiently than manual or conventional techniques.
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New diagnostic and management tools are needed for the emerging epidemic of heart failure (HF). While the
introduction of blood-based biomarkers, such as N-terminal pro hormone BNP (NTproBNP), has improved
diagnosis of HF in the community, more work is needed to identify the causes of HF, stratify the syndrome into its
subtypes for targeted therapies and identify patients at higher risk for adverse events, such as ventricular arrhythmia.
As containment of healthcare costs has become paramount, increased efficiency must also be achieved with often
diminishing resources, and with a strong emphasis on portability and accessibility. The emergence of low cost
sensors, ubiquitous computing and the internet of things, as well as artificial intelligence (AI) applied to hospital
data hold promise for addressing both individual and population scale diagnostic and treatment gaps [1].

Deep phenotyping with multiomics, combined with AI applied to wearable devices and existing clinical data,
holds considerable promise in identifying novel low-cost biomarkers and intermediate endophenotypes for early
disease stratification and prognostication [2]. Deep learning, using convolutional neural networks, applied to
digital ECG is one of the more promising applications of AI in HF [3,4]. However it lacks the transparency and
explainability required to stratify patients and identify disease mechanisms. We have shown that a machine learning
model applied to digital 12L ECG can identify moderate to severe left ventricular systolic dysfunction (LVSD) [5]

with a similarly high degree of accuracy. As the method is transparent, it also reports a number of well validated ECG
biomarkers of arrhythmia including the spatial QRS-T angle [6]. Stratification of HF patients by the spatial QRS-T
angle and other discrete parameters identifies those at higher risk for HF readmission, implantable cardioverting
defibrillator (ICD) implantation and death [6]. Deep learning applied to echocardiography has also been shown
to both accurately classify views and LV ejection fraction (LVEF), chamber volumes, LV mass, global longitudinal
strain (GLS) and diagnoses [7–9]. Furthermore AI has been shown to also assist echocardiography image acquisition
by probe guidance [10]. With these tools, AI-enabled unskilled users could potentially use point of care ultrasound
(POCUS) to diagnose HF and its most likely cause.

Wearable devices have the advantage of gathering longitudinal data from continuous monitoring rather than
from episodic hospital encounters. The LINK-HF study showed that personalized AI modeling applied to data from
a single lead ECG patch accurately identified patients 6–7 days prior to readmission with HF [11]. The advantage
of wearable sensors is that a wide range of activities are captured within the context of life events including, for
example, walking pace, sleep, exercise and stress. Mental stress is of considerable interest as not only has it been
shown to have a significant negative impact on cardiovascular health, for example, Takotsubo syndrome, but similar
to an exercise stress test mental stress can be applied in a standardized fashion. Integrating multiomics data across
multiple domains such as metabolomics, advanced ECG (AECG), echocardiography and mental stress testing with
wearable devices is complex but achievable.

We therefore undertook an investigation of the utility of multiomics and deep phenotyping in patients with
HF with reduced EF (HFrEF) using AI and machine learning applied to standard clinical data. In a subset of HF
patients and controls, we also applied a standardized virtual reality mental stress test (VR-MS), using validated
methods, to evaluate stress biometrics from a wearable device and arrhythmic biomarkers identified by AECG.
The primary objective was to evaluate the diagnostic accuracy of AECG and echocardiography AI (Echo AI) in
patients with HF. The secondary objective was to explore the biophysical response to a standardized VR-MS. We
hypothesized that advanced diagnostic tools utilizing machine learning would accurately discriminate HF from
healthy controls, and demonstrate the proarrhythmic effects of mental stress in patients with HF.

Patients & methods
Patients
The NanoHF study was approved by the Northern B Health and Disability Ethics Committee (16/NTB/115)
(#16/680) and Waitematã District Health Board’s IRB (#RM13458). Patients with HFrEF were identified from an
echocardiography database, >18 years of age, able to provide written informed consent, and had previously docu-
mented signs and symptoms of HF with an EF from 20 to 45% on echocardiography. Exclusion criteria included:
diabetes mellitus (Type 1, Type 2 on insulin and/or last available HbA1c ≥65 mmol), chronic renal impairment
(estimated glomerular filtration rate [eGFR] <50 ml/min), chronic lung disease (e.g., chronic obstructive airways
disease [COPD] and asthma) and/or hospital admission within 3 months of enrolment related to exacerbation
of HF. HF was defined as a clinical syndrome with biochemical (NTproBNP >212 pmol/l at any age; normal
<35 pmol/l), mechanical (LVEF <50% or GLS <18%) or electrical (using a validated AECG score [12]) evidence
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for HFrEF. Enrolment was enriched for patients with devices (ICD and cardiac resynchronization therapy). Con-
trols were self-reported volunteers who also underwent ECG and echocardiography. Recovered HF (HFrec) was
defined biochemically, NTproBNP <35 pmol/l, or mechanically GLS ≥18% or LVEF ≥50%.

Biomarkers & genomics
Blood was collected using ethylenediaminetetraacetic acid tubes. After centrifugation at 3000 × g for 5 min, plasma
was stored at -80◦C before being shipped on dry ice to core lab facilities for testing. NTproBNP was measured
using a Siemens Dimension Vista assay. First morning urinary levels of titin-N-terminal fragments (U-TTN)
were measured by a highly sensitive sandwich ELISA (#27900 Titin N-Fragment Assay Kit, Immuno-Biological
Laboratories, Gunma, Japan) system [13]. To avoid effects of concentration or attenuation of urine, the value of
titin N-fragment concentration was corrected by the value of creatinine, and expressed by the following creatinine
ratio: (U-TTN/Cr; pmol/μmol/l), as previously described [13].

Metabolomics
Plasma and urine samples underwent gas chromatography–mass spectrometry analysis using a methyl chloroformate
derivatization, and solid-phase microextraction (SPME) volatilomics using an Agilent 7890A gas chromatograph
coupled to a 5975C inert mass spectrometer. Plasma samples were analyzed using targeted liquid chromatography–
mass spectrometry. A metabolomics approach was used to analyze plasma samples from HFrEF patients and
controls via an AbsoluteIDQ p400 kit (Biocrates Life Sciences AG, Innsbruck, Austria) using a Thermo Q-Exactive
Orbitrap liquid chromatography–mass spectrometry. SPME results were validated using a Ketoscan mini (Sentech,
Gyeonggi-Do, Korea) in a sample of cardiac inpatients and outpatients.

DNA sequencing
DNA was extracted from buffy coat and underwent sequencing of 174 genes associated with inherited cardiac
disease using the Cardiac Trusight panel on an Illumina MiSeq (Grafton Genomics, Auckland, New Zealand).
Cardioclassifier (https://www.cardioclassifier.org/ [Imperial College London, 2017]) was used for variant calling.

Advanced ECG
ECGs were recorded using a Cardiax machine (Imed, Budapest, Etele, Hungary). AECG analyzed parameters
included those derived from the conventional scalar 12-lead ECG, as well as from signal averaging of all adequately
cross-correlated QRS and T complexes by using software originally assembled at NASA [12,14] to generate results for:
several spatial (derived vectorcardiographic or 3D) ECG parameters including the spatial mean and peaks QRS-T
angles, the spatial ventricular gradient, and various spatial waveform azimuths, elevations and time-voltages [12,15];
parameters of QRS and T-waveform complexity derived by singular value decomposition including the principal
component analysis ratio [14], the dipolar and nondipolar voltage equivalents [16] of the QRS and T waveforms, and
a parameter describing the shape of the T wave via measurement of the spatial allocation of equivalent dipoles that
uses an error function to minimize the difference between measured and equivalent dipoles-reconstructed potentials,
known as the root-normalized mean square error of the T wave (RNMSE T) [17]. Data from the 5-min ECGs were
also processed for multiple measures of both beat-to-beat RR and QT interval variability [18]. All AECG parameters
have been described in previous publications [14,15,19]. We utilized a previously validated AECG score for using a
validated multivariate logistic regression based on larger dataset of patients with known LVSD [5,12].

Echocardiography
A brief 5-min echocardiography protocol was used by a sonographer using a GE E95 to obtain standard measures
such as LVEF using Simpson’s biplane method. LVSD by echocardiography was considered present when LVEF
<50%. LV GLS was also measured using EchoPAC (GE, IL, USA). DICOM files were fed into an AI pipeline
to classify, segment and analyze each image. A convolutional neural network, described elsewhere [7], was used to
label each view into one of 23 classes. The area-length formula was used to calculate AI-generated LV volumes
(LVEDV/LVESV) and EF (AI-LVEF). AI-generated indexed LA volume and indexed LV mass were also compared
with manual measurements (M). This pipeline is part of the integrated cardiac and modeling and analysis plat-
form developed at the Auckland Bioengineering Institute (Integrated Cardiovascular Project, NSBRI Foundation,
NASA Grant NCC 9-58) [20].
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Table 1. Baseline characteristics.
Heart failure (n = 46) Controls (n = 20) p-value

Age (years), mean (SD) 68 (8) 52 (9) 5 × 10-9

Males, n (%) 41 (89) 10 (50) 0.0006

European, n (%) 29 (63) 16 (80) 0.18

AF, n (%) 10 (22) 0 (0) N/A

HTN, n (%) 21 (46) 0 (0) N/A

T2DM, n (%) 9 (20) 0 (0) N/A

ACEi/ARB, n (%) 37 (80) 0 (0) N/A

�-blocker, n (%) 39 (85) 0 (0) N/A

MRA, n (%) 14 (30) 0 (0) N/A

Statin, n (%) 29 (63) 0 (0) N/A

Frusemide, n (%) 10 (22) 0 (0) N/A

EF bp, mean (SD) 39% (10) 57% (5) 8 × 10-9

GLS, mean (SD) -13% (0.04) -21% (0.05) 3 × 10-8

NTproBNP (pmol/l), mean (SD) 115 (124) 8 (10) 0.0002

ACEi: Angiotensin converting enzyme inhibitor; AF: Atrial fibrillation; ARB: Angiotensin receptor blocker; EF bp: Ejection fraction by Simpson’s biplane; GLS: Global longitudinal strain; HTN:
Hypertension; MRA: Mineralocorticoid receptor antagonist; NTproBNP: N-terminal pro hormone BNP; SD: Standard deviation; T2DM: Type 2 diabetes.

Mental stress testing & wearable devices
A 3D VR-MS was created using validated content to evoke mental stress in a subset of participants with continuous
AECG recording [21–23]. The content was based on a social trier stress test, serial subtraction, agoraphobic and other
environmental stressors, designed to cause episodic mental stress, that have been associated with LV dysfunction [23]

and arrhythmia [24], over a 5-min interval (Supplementary Video 1). VR epochs are listed in Supplementary Table
1. A Samsung Gear VR headset with a Galaxy S8 was used with content run in Oculus. VR-MS participants wore
an Empatica E4 on their dominant wrist, measuring skin temperature, electrodermal activity (EDA) and pulse
photoplethysmography (PPSG). AECG was recorded 5-min prior and during VR-MS. A further 12 participants
wore a radial pulse wave tonometer built by Microsoft Research, which included a single-lead 5-min ECG at
baseline. EDA and PPSG signals were fed to an AI pipeline involving feature extraction from each channel
consisting of mean, median, standard deviation, and min and max of data. Subsequently, all the extracted features
from each channel (EDA, PPSG and combined signals) were concatenated into a single vector feature. The feature
vector from these signals were fed into two classifiers, long short-term memory and support vector machine to
distinguish between groups and within groups, before and during VR-MS.

Statistics
Univariate analysis was performed using the Student’s t-test for continuous parametric variables, a Mann–
Whitney U-test for nonparametric and chi-square test for categorical variables. Receiver operating characteris-
tic curve analysis was used to assess performance of diagnostic biomarkers by c-statistic. All tests were two-tailed
with p < 0.05 deemed statistically significant, except where tests for multiplicity were applied. Metaboanalyst
(Version 4.0, Alberta, Canada) was used for pathway and multivariate analysis which was adjusted for multiplicity
to reduce the false discovery rate (FDR). Medcalc software version 16.8.4 was used to analyze the data. The
data output from mental stress testing were analyzed using GraphPad Prism 8 (version 8.4.3), comparing slopes,
intercepts and elevations using simple linear regression.

Data availability
The materials, data, code and associated protocols are available to readers with application to the corresponding
author.

Results
Three hundred and sixty two patients were screened for inclusion/exclusion criteria. Sixty six participants (46 with
documented diagnosis of HF and 20 self-reported healthy volunteers) were enrolled in the study, with written
informed consent. Baseline characteristics are outlined in Table 1. Within HF patients 27 (59%) had an ischemic
cardiomyopathy and 19 (41%) had either an ICD (n = 14) or cardiac resynchronisation therapy defibrillator
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Table 2. Dilated cardiomyopathy pathogenic mutations.
Gene Titin band Coding HGVS Genomic position Zygosity Variant type

Titin A-band c.96904+2T�A chr2:179407794 Het Splice donor variant

Titin A-band c.50296C�T chr2:179476842 Het Nonsense

Titin I-band c.43382delA chr2:179497350 Het Frameshift

Titin M-band c.101689G�T chr2:179399653 Het Nonsense

Desmoplakin – c.6805 6824delAAACAGAAGCTTGGCATTTA chr6:7584298 Het Frameshift

chr: Chromosome; del: Deletion; HGVS: Human Genome Variation Society.

therapy (CRTD; n = 5). Ten (71%) of the ICDs were implanted for primary prevention. HF patients were older
and had a higher percentage of males than controls. Mean NYHA status was II.

Although patients were screened according to the criteria noted above based on historic data, a number of patients
with HFrEF had recovered (HFrec) either spontaneously or with medical interventions. Seventeen (36%) had an
NTproBNP <35 pmol/l and were defined as biochemical HFrec. Seven (15%) had mechanical HFrec, defined as
GLS ≥18% and 7 (15%) had LVEF ≥50%.

Biomarkers & genomics
28 metabolites across all diagnostic definitions of heart failure were identified by GCMS, which met false discovery
rate (FDR). Numerous of these were either directly part of or indirectly linked to the citric acid cycle and
mitochondrial metabolism. By univariate analysis, isocitric acid had the highest AUC 0.84, 95% CI 0.73 to 0.92 to
discriminate HF. 35 metabolites were identified by LCMS which fulfilled the FDR. Most notably these included
symmetric dimethyl arginine, creatinine, arginine and kynurenine, as well as numerous phosphatidylcholines,
sphingomyelins, lysophosphatidylcholines, two cholesteryl esters and one triglyceride (55:9). Only one volatile,
acetone, reached significance by the stringent FDR used, however several common VOCs were identified in
both plasma and urine (t-test, P<0.05) which have previously been associated with heart failure. These included
pentane, 2-butanone, and 2-pentanone. Breath acetone was validated as a heart failure biomarker (n = 61) using
a commercially available device (Ketoscan mini, Sentech, Gyeonggi-Do, Korea) with AUC of 0.8, 95% CI 0.61
to 0.92. Five (11%) patients had pathogenic mutations associated with dilated cardiomyopathy (Table 2), with
four (9%) having Titin gene (TTN) truncations (TTNtv). U-TTN/Cr concentrations were statistically higher in
patients with prior history of HF compared with controls (median 542 vs 360 pmol/μmol/l; difference 95%
CI: 62–368; p < 0.005). In TTNtv carriers, U-TTN/Cr was not significantly different, though NTproBNP was
substantially higher than in TTN wild-type HF patients (mean 347 vs 95 pmol/l; 95% CI: 144–359; p < 0.0001).
Both kynurenine and hexanal, an aldehyde bioproduct of lipid peroxidation, were different (p < 0.05) in TTNtv
carriers, but neither exceeded the statistical FDR.

Advanced ECG
The AECG LVSD score correlated with GLS (r = -0.77, p < 0.0001) as also previously demonstrated [6]. Moreover,
it discriminated HF at baseline (area under the curve [AUC]: 0.95, 95% CI: 0.85–0.99) independent of NTproBNP
(Figures 1 & 2), which itself correlated with cardiac energetics, not mechanics. QT variability index was higher in
ischemic versus nonischemic cardiomyopathy (p = 0.003), especially in those with an ICD (p = 0.0004). Biochemical
HFrec, defined by NTproBNP <35 pmol/l, was best discriminated by GLS (AUC: 0.84; 95% CI: 0.68–0.94;
p < 0.0001), urine creatinine (AUC: 0.81; 95% CI: 0.67–0.93; p = 1 × 10-5) and plasma acetone (AUC: 0.79;
95% CI: 0.65–0.92; p = 0.001), whereas mechanical HFrec defined by LVEF ≥50% was best discriminated by
the AECG LVSD score (AUC: 0.94; 95% CI: 0.85–0.99; p = 5 × 10-5). Various AECG parameters relating to
R-R interval variability (RRV) and QT interval variability (QTV) differed between controls and HF patients at
baseline (Figure 3). Alpha 2, a fractal parameter of RRV, was increased at baseline in HF patients versus controls,
but further increased with mental stress only in the controls (Figure 3, top). On the other hand, the RNMSE T and
the root mean square of beat-to-beat QT interval variability in lead II, were not only relatively increased at baseline
in the HF patients, but also even more notably increased (further clinically deteriorated) during mental stress in
HF patients compared with controls (Figure 3, bottom).

The Empatica E4 output showed both heart rate (HR) and EDA increased with VR-MS in controls (Figure 4);
however, only HR rose in HFrEF patients (p = 0.01) with accompanying increased QT variability index (QTVi) in

future science group www.futuremedicine.com 1339



Short Communication Gladding, Loader, Smith et al.

0

20

40

100 – specificity

S
en

si
ti

vi
ty

200 40 60 80 100

100

80

60

NTproBNP

AECG LVSD score

Figure 1. Receiver operating characteristic
comparing N-terminal pro hormone BNP and
advanced ECG left ventricular systolic
dysfunction score for echocardiographic heart
failure ejection fraction <50%.
AECG: Advanced ECG; LVSD: Left ventricular
systolic dysfunction.

-0.3

-0.2

-0.1

AECG LVSD score

G
lo

b
al

 lo
n

g
it

u
d

in
al

 s
tr

ai
n

-5 10

0.0

0 5
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AECG: Advanced ECG; LVSD: Left ventricular systolic dysfunction.

those with ICDs (p = 0.04). Analysis of the Empatica E4 EDA and PPSG signal with a long short-term memory
classifier discriminated between HF and controls prior to and during VR-MS with 81.3 and 73.9% accuracy,
respectively. Pulse tonometry analysis was confounded by the presence of atrial fibrillation, including in three of
the four TTNtv carriers. However, in HFrEF patients without atrial fibrillation compared with controls, central
dicrotic height was higher, pulse pressure lower and median time between the arrival of the pulse at the artery (the
wave foot) and the anacrotic notch (reflected wave arrival) was longer in HFrEF.
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(and VLF power) responses to mental stress (top panels), suggests relative cardiac sympathetic saturation with
depleted cardiac sympathetic reserve at baseline in the heart failure patients. At the same time, both increased
baseline and more notable deterioration (increases) in RNMSE T and IIrSSD QT with mental stress suggests reduced
electrical coherence in repolarisation with potentially increased ventricular arrhythmic propensity in heart failure
patients versus controls (bottom panels).
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Echo AI
Compute time using was < 10 s for classification, segmentation and analysis using a single graphics processing
unit (GPU). A total of 11 (18%) nonphysiological AI-ESV and associated AI-LVEF were excluded versus two
(3%) manual-LVEF (χ2 = 7; 95% CI: 3–27; p = 0.008). AI generated measurements correlated well with manual
measures: LVEDV r = 0.77, LVESV r = 0.8, LVEF r = 0.71, indexed LA volume r = 0.71, indexed LV mass r = 0.6
and p < 0.005. Mean absolute error of M-LVEF versus AI-LVEF was 7.4 ± 6.6%. AI-LVEF, M-LVEF and other
HFrEF biomarkers had a similar discrimination for HFrEF (AUC M-LVEF: 0.93 vs AI-LVEF: 0.88; 95% CI: -0.03
to 0.15; p = 0.19).

Discussion
In this project we validated a machine learning tool applied to ECG, previously diagnostic for HF and prognostic
for related outcomes [5,6]. Second, we developed a pipeline for AI analysis of echocardiography to validate a method
for obtaining LVEF more efficiently than manual methods [7]. Third, we integrated this information with next
generation sequencing, metabolomics and volatilomics to reveal biological insights and identify novel diagnostic
biomarkers (Figure 5). Lastly, we used a wrist worn wearable device and AECG to measure the effect of a VR-MS on
a subset of HF patients and controls.

We showed that AECG, using logistic regression scores applied to conventional, spatial (vectorcardiography) and
other ECG variables, has a diagnostic accuracy for detecting HF similar to NTproBNP. This result validates this
method prospectively, which we have previously shown to have both diagnostic and prognostic value in the context
of HFrEF [5,6]. Logistic regression and linear discriminant analysis, both forms of machine learning, applied to
detailed ECG segmentation and highly curated databases, underpin the technology [12], which also demonstrates an
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ability to track individual health status over time (Supplementary Figures 1 & 2). This therefore has the transparency
and explainability that deep learning methods lack [3,4].

In this study we used AECG to investigate at baseline and during mental stress a number of ECG variables
known to be associated with increased arrhythmic risk in HF patients. We showed that not only do patients with
HF have increased spatial QRS-T angle at baseline, a biomarker associated with HF readmissions and mortality [6],
but also increased alpha 2 RRV fractal dimension [25] and QT variability [26]. Both of these parameters are also
strong predictors of mortality that moreover likely indicate, among other things, increased resting efferent cardiac
sympathetic activity [25]. During VR-MS, alpha 2 also notably increased in healthy participants, but not in HF
patients. The relatively blunted response in alpha 2 in HF patients during mental stress suggests that cardiac
sympathetic activity might already be near maximum in such patients, in other words, ‘reduced cardiac sympathetic
reserve’. It should also be noted that whereas alpha 2 does not appear to be affected by ‘physical’ stress, for example,
postural change [27], it was clearly increased by ‘mental’ stress in healthy subjects in this study. Since alpha 2 of RRV
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Figure 5. Study workflow, methods and results.

can be derived from single lead ECGs, this finding demonstrates potential promise for employing alpha 2 with
wearable technologies to monitor mental stress in patients with and without HF.

We also identified at least two AECG variables, specifically the RNMSE T and the root mean square of beat-to-
beat QT interval variability in lead II, that were not only expectedly increased in HF patients at baseline, but also
further relatively increased (worsened) by mental stress in HF patients compared with controls. Pending further
validation, variables such as these might therefore hold promise for eventual use with wearable ECG technologies
for monitoring arrhythmic propensity in real time.

Our study showed numerous metabolic changes associated with HF, which principally indicated abnormalities
in mitochondrial metabolism, namely the citric acid cycle, ketone metabolism and kyneurinine pathway. One
metabolite, acetone, was validated in the breath of patients with HF using a commerciallly available sensor. Our
study, however, was underpowered to demonstrate any differences in the metabolite profiles of TTNtv carriers,
particularly as this was confounded by their having a higher NTproBNP. Nor did we observe in TTNtv carriers
an alteration in urinary N-terminal titin fragments previously shown to be a negative prognostic indicator in
HF [28]. We were unable to demonstrate any statistically significant correlations between metabolomic biomarkers
and AECG; however, metabolomics has previously shown that kynurenine pathway is associated with mental
stress-induced LVSD and ketone bodies (acetate and beta hydroxybutyrate) with QTc in shift workers [29,30]. We
were, however, able to show an ability to not only discriminate between healthy participants and HF patients
using PPSG and EDA, but also identify the presence of mental stress with a high degree of accuracy. With this
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knowledge it may be possible to develop wearable sensors, perhaps also monitoring metabolism [31], which will be
capable of predicting HF exacerbations and short-term arrhythmic risk, influenced by mind–heart interactions in
real time [32,33].

In our study we validated an Echo AI method provided by Zhang et al. [7] and showed that deep learning applied
to a 5-min echocardiography protocol rapidly quantifies LVEF, equivalent to human interpretation. This method
holds significant utility in the rapid identification of LVSD using POCUS in the ambulatory setting and opens up
new opportunities for monitoring and titrating therapies in HF patients. We have previously shown the capability
of AECG to identify both structural heart disease and LVSD, and allocate patients to POCUS screening versus full
echocardiography [34,35]. Our intention going forward is to integrate all these sources of data into a virtual machine
to apply biophysical electromechanical and circulatory computational modeling to better predict outcomes and
response to therapies in HF patients [36].

Multiomics has been used fairly extensively in highly controlled cell-based and animal models of disease to
identify novel biological pathways or casual genes [37,38]. Due to the high dimensionality and complexity of analysis
multiomics is less often used in human studies; however, there is growing expertise in the field which demonstrates it
is not only possible but a powerful tool in delivering personalized healthcare, tracking individual responses over time
(Supplementary Figure 1). Multiomics has been used to deliver insights into human obesity and prediabetes [39,40];
however, to our knowledge it has not been extensively used in the diagnosis or stratification of human HF [41] or
in combination with machine learning applied to echocardiography and ECG [42]. The use of clinical multiomics
will be impeded by cost, time and complexity; however, machine learning is the logical tool to assimilate, predict
and visualize results in a way which should disburden clinicians who are otherwise awash in data. To a simplistic
degree we are working toward the implementation of some of the technologies outlined in this paper in a rapid
cardiac screening clinic, using conventional blood tests, ECG and echocardiography ‘omics delivered via a single
platform’ [19,20,34,35].

Limitations
This study was small and underpowered to identify metabolomic differences in specific subgroups, for example,
TTNtv carriers. Multiple hypothesis testing increases the potential for Type I error; however, the discussion has
been limited to points for which there is sufficient prior knowledge to make reasonable conclusions.

Conclusion
This study has demonstrated the feasibility of integrating multiple sources of ’omic clinical data and its potential
clinical utility in the context of heart failure. This allowed the expansion of the clinical phenotype of HFrEF
suggesting possible future directions for substratfiying patients and delivering personalised management strategies.
Further work is needed to ensure the additional effort required to generate this data leads to a cost-effective
improvement in patient outcomes.

Summary points

• Multiomics holds considerable promise for identifying biological pathways in heart failure (HF), which may have
therapeutic or diagnostic (‘theranostic’) potential.

• Breath acetone and other metabolite biomarkers may be useful diagnostic or prognostic tools in human HF.
• Machine learning applied to echocardiography and electrocardiography could be used to expedite and enhance

the sensitivity and specificity of these tools to both diagnose and risk stratify patients with HF.
• Deep phenotyping with wearable devices during external perturbation, such as mental stress testing, reveals

novel insights into disease pathophysiology.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.futuremedicine.com/doi/sup
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the study. S Loader contributed to research co-ordination, patient enrolment and data collection. E Zarate, S Green and S Villas-

1344 Future Cardiol. (2021) 17(8) future science group

http://www.futuremedicine.com/doi/suppl/10.2217/fca-2020-0225


Multiomics, virtual reality & artificial intelligence in heart failure Short Communication

Boas contributed to gas chromatography–mass spectrometry metabolomics and analysis. K Smith, P Shepherd and P Kakadiya

contributed to biobanking and next generation sequencing. W Hewitt contributed to echocardiography artificial intelligence coding

and data analysis. E Thorstensen, C Keven and M Coe contributed to liquid chromatography–mass spectrometry metabolomics

and analysis. B Nakisa, T Vuong and MN Rastgoo contributed to Empatica E4 machine learning analysis. M Jüllig contributed to
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The past two decades were marked with the outbreaks of many viral diseases such as Chikungunya, Ebola, Zika,
Nipah, H7N9 Bird flu, H1N1, SARS and MERS. The world woke up to this decade with a new disease outbreak.
An outbreak of a novel Coronavirus emerged in Wuhan city in the Hubei province of China in December 2019.
Most of the initially identified patients were traced back to the ‘wet market’ where live animals are slaughtered and
sold. The market might have played a role as an amplification hotspot from where the virus spread to other parts
of China and subsequently to 213 countries and territories in a very short time. The WHO named this disease
‘COVID-19’, which is an acronym of Coronavirus Disease 2019 on 11 February 2020. As of 17 August 2020,
a total of 21.2 million confirmed cases and 761,000 deaths have been reported globally [1]. The worst outbreaks
of COVID-19 are reported in the USA, India, Brazil and Russia where the number of cases has surpassed the
confirmed cases in China. The WHO declared the current outbreak of COVID-19 a ‘Public Health Emergency of
International Concern’ on 30 January 2020 and a ‘pandemic’ on 11 March 2020.

Although the fatality rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; 2.9%) is much less
compared with SARS-CoV (9.6%) and MERS-CoV (34.4%), the high infectivity rate of SARS-CoV-2 compared
with other coronaviruses has become a global concern. Mortality and vulnerability to COVID-19 were found to be
higher in males compared with females, which could be attributed to other gendered practices such as smoking [2].
The fatality rate of COVID-19 varied with an age gradient and it was also influenced by underlying co-morbidity,
in other words, conditions such as diabetes, hypertension, cancer, cardiovascular diseases and chronic respiratory
disease [3–5]. Vertical transmission of COVID-19 infection from mother to baby was not observed [6]. Children are
vulnerable to COVID-19 but tend to show only mild symptoms [7].

SARS-CoV-2
The etiological agent was named as SARS-CoV-2 by the International Committee on Virus Taxonomy on 11 Febru-
ary 2020. SARS-CoV-2 is a beta coronavirus of zoonotic origin belonging to the subgenus Sarbecovirus in the Or-
thocoronavirinae subfamily of the family Coronaviridae transmitted to humans in a spillover event. Bats are thought
to be the animal reservoir of SARS-CoV-2 but the other likely intermediate animal host is yet to be identified.
The virus is a spherical particle of 70–90 nm [8], having spikes of glycoprotein projecting from its surface that bind
to receptor angiotensin-converting enzyme 2 on the surface of the cell. These spikes give the virus a crown-like
appearance.

The glycoprotein of SARS-CoV-2 has a furin polybasic cleavage site (PRRARS|V) located between the residues
682 and 685 at the boundary of two subunits S1/S2 that is catalyzed during biogenesis [9]. The presence of this
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cleavage site in SARS-CoV-2 that is observed in avian influenza viruses but not related viruses like SARS-CoV and
SARSr-CoVs makes it distinct and has an impact on entry, tropism, spread and pathogenicity of the virus [9,10].
Expression of furin proteases in the respiratory tract, brain, pancreas, liver, gastrointestinal tract and reproductive
organs of the host enables the virus to infect different organs and also facilitates its release into the surrounding
environment in many ways. At present, 249 protein structures and 255 whole-genome sequences belonging to
SARS-CoV-2 are available in the public domain.

SARS-CoV-2 genome
A recent study suggested a single-source origin of SARS-CoV-2, as genomic sequences collected from different
patients showed strikingly high identity and also indicated that SARS-CoV-2 is phylogenetically closer to bat-SL-
CoVZC45 and bat-SL-CoVZXC21 [11]. Its genome size is approximately 30 kb [12]. A vast portion of the genome is
occupied by two open-reading frames (ORF1a and ORF1b) that translate into pp1a and pp1ab polyproteins, which
are then cleaved to 16 nonstructural proteins (nsp) like cysteine proteases, chymotrypsin-like, RNA-dependent
RNA polymerase, helicase and so on. The rest of the genome encodes structural proteins like the spike(S), envelope
(E), membrane (M) and nucleocapsid protein and 6–7 accessory proteins [13]. Genetic analysis revealed that SARS-
CoV-2 has evolved in two lineages: ancestral S type and other more prevalent, aggressive and virulent L type derived
from S type [14]. It is interesting to note that in the early stages of the epidemic, L type was more frequent, but its
frequency decreased later and the frequency of S type increased, which can be attributed to differential selection
pressure and epidemiological features [14].

Transmission
COVID-19 mainly spreads from human to human through direct contact by respiratory droplets during coughing
or sneezing and through indirect contact route by fomites and regularly touched surfaces [15]. SARS-CoV-2 can
remain viable on various surfaces for several hours to days [16]. Air-borne transmission is possible in a medical or
hospital setting in processes that generate aerosols. Although fecal–oral transmission of COVID-19 has not been
reported to date, it remains a potential route [17,18].

Clinical symptoms
Most patients experience mild flu-like symptoms including fever, cough, malaise, fatigue, sputum production
and respiratory problems. Less common symptoms such as headache, hemoptysis and gastrointestinal symptoms
with diarrhea and serious symptoms like pneumonia and bronchitis were also observed. Complications like Acute
Respiratory Distress Syndrome, RNAaemia, acute cardiac injury, acute kidney injury and secondary infections [19]

were reported in some patients. Other lab parameters associated with COVID-19 were low white blood cells
and lymphocyte count, an increase in erythrocyte sedimentation rate, C-reactive protein, infiltrates and bilateral
ground-glass opacity in lung CT scans.

Prevention & control
It is imperative to adopt control measures such as case isolation, contact tracing, quarantine to limit human-to-
human COVID-19 transmission. Personal hygiene measures such as frequent hand washing, respiratory hygiene,
social distancing, use of face masks/shields and disinfection of surfaces can help in reducing the transmission.

Screening & diagnosis
Discriminant clinical features like hyposmia (loss of smell) and hypogeusia (loss of taste) can be explored for
preliminary diagnosis in telemedicine and mass screening [20]. Specimen samples collected from oropharyngeal and
nasopharyngeal swabs or blood samples are used for diagnosis. Although routinely used for COVID-19 diagnosis
in outbreak settings, sole reliance on CT scans can be misleading due to indistinguishable images with other
viral pneumonia. Molecular test reverse transcriptase-PCR (RT-PCR) is recommended by WHO as the method
of choice for detecting the SARS-CoV-2 nucleic acid for diagnosis of COVID-19. As the false-negative rate of
RT-PCR is high, it is imperative to use CT scan of the chest as a supplementary diagnostic measure to confirm
the diagnosis. Point-of-care immunodiagnostic assays that detect proteins from the COVID-19 virus or human
antibodies generated against the virus in blood samples are also being used routinely to complement molecular
tests due to low cost and fast results, but these methods suffer from poor sensitivity and are only qualitative [1].
Utility of these serological methods in public health settings for contact tracing and evaluating the success of
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nonpharmaceutical interventions has been discussed elsewhere [21]. These serological methods have now received
Emergency Use Authorization by the US FDA. CRISPR-Cas12-based assay that provides rapid results can be used
in point-of-care testing in the future [22].

According to recent data from WHO, 13 candidate vaccines are being evaluated. An experimental vaccine
developed by the University of Oxford/AstraZeneca has entered Phase III of clinical trials while vaccine candidates
from CanSino Biological Inc./Beijing Institute of Biotechnology and Moderna/NIAID have reached Phase II trials
and ten vaccine candidates have reached Phase I/II and Phase I stages. 129 other candidate vaccines are in the
preclinical stage (WHO) and many are in pipeline [23,24].

Therapeutic agents
Some of the potential drugs against COVID-19 beingconsidered and evaluated are remdesivir (GS-5734), baric-
itinib, a combination drug ritonavir/lopinavir, Ribavirin R©, umifenovir and IFN-β and other broad spectrum
antiviral agents. Remdesivir was not found to be effective in treating COVID-19 patients in a placebo-controlled
randomized trial of remdesivir [25]. In a recent development, the FDA has approved the use of remdesivir in
confirmed and suspected cases of COVID-19. As of 25 June 2020, about 1235 clinical trials for various therapeutic
agents against COVID-19 are being conducted across the globe [26].

Application of artificial intelligence in COVID-19 disease management
Unprecedented pace of efforts to address the COVID-19 pandemic situation is leveraged by big data and artificial
intelligence (AI). Various offshoots of AI have been used in several disease outbreaks earlier. AI can play a vital role
in the fight against COVID-19.

AI is being successfully used in the identification of disease clusters, monitoring of cases, prediction of the
future outbreaks, mortality risk, diagnosis of COVID-19, disease management by resource allocation, facilitating
training, record maintenance and pattern recognition for studying the disease trend. Several applications of AI that
are garnering a lot of interest and raising hopes in the fight against COVID-19 are as follows:

AI in prediction & tracking
AI can be harnessed for forecasting the spread of virus and developing early warning systems by extracting
information from social media platforms, calls and news sites and provide useful information about the vulnerable
regions and for prediction of morbidity and mortality. Bluedot identified a cluster of pneumonia cases and predicted
the outbreak and geographical location of the COVID-19 outbreak based on available data using machine learning.
HealthMap collects the publicly available data on COVID-19 and makes it readily available to facilitate the
effective tracking of its spread. Recently, the role of AI in identification and forecasting of COVID-19 outbreaks
by employing multitudinal and multimodal data was emphasized [27].

AI in contact tracing
AI can augment mobile heath applications where smart devices like watches, mobile phones, cameras and range
of wearable device can be employed for diagnosis, contact tracing and efficient monitoring in COVID-19 [28].
Applications like AI4COVID-19 that rely on audio recording samples of 2 s cough can be used in telemedicine [29].

AI in monitoring of COVID-19 cases
AI techniques are applied for monitoring patients in clinical settings and prediction of course of treatment. Based
on the data derived from vital statistics and clinical parameters, AI may provide critical information for resource
allocation and decision-making by prioritizing the need of ventilators and respiratory supports in the Intensive
Care Unit [30]. AI can also be used for predicting the chances of recovery or mortality in COVID-19 and to provide
daily updates, storage and trend analysis and charting the course of treatment.

AI in early diagnosis
AI was used for the detection and quantification of COVID-19 cases from chest x-ray and CT scan images [31–33].
Researchers have developed a deep learning model called COVID-19 detection neural network (COVNet), for
differentiating between COVID-19 and community-acquired pneumonia based on visual 2D and 3D features
extracted from volumetric chest CT scan [34]. Singh et al. developed a novel deep learning model using Multi-
Objective Differential Evolution and convolutional neural networks for COVID-19 diagnosis using a chest CT
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scan [35]. COVID-ResNet developed using automatic and discriminative learning rate and progressive image
resizing performed better than COVID-Net in diagnosing COVID-19 [36]. Alom et al. developed a system called
COVID MTNet by applying improved Inception Recurrent Residual Neural Network and NABLA-3 network
models for detection and localization of regions of interests from both x-ray images and chest CT scan [37]. Another
study used AI-based classifiers for predicting the outcome of RT-PCR results of COVID-19 cases using 16 simple
parameters derived from complete blood profile [38]. This may find application in reducing the number of RT-PCR
tests in resource-poor settings.

AI in reducing the burden from medical practitioners & healthcare staff
AI-based triage systems can help in reducing the work burden of medical staff and healthcare workers by automating
several processes such as imparting training to practitioners, determination of the mode of treatment and care by
analyzing clinical data using pattern recognition approaches, digitalization of patient’s reports and also by offering
solutions that minimize their contact with the patients [39–41]. AI can be used for classification of patients based
on the severity of symptoms, genetic disposition and clinical reports in different categories like mild, moderate
and severe, so that different approaches can be adopted for handling the patients in the most effective manner.
AI in telemedicine can also be used to eliminate the need of frequent and unnecessary hospital visits by distant
monitoring of cases and recording of patient’s data in asymptomatic cases or patients with mild symptoms. AI-based
medical chatbots can also be used for consultations, thereby reducing the physical crowding of hospitals as well
as the spread of infection and thus prevent weighing down of efficient operation of critical care services [42,43].
Chatbots like Clara from the Centre for Disease Control and Zini are providing much needed support to patients
in remote settings [44]. A prognostic prediction algorithm predicted the mortality risk of patients by machine
learning methods using extracted features derived from the data of other patients as training dataset [45]. A similar
approach was used to predict the possibility of developing acute respiratory distress syndrome [46]. Service robots
and anthropomorphic robots with AI core can be used for the delivery of essential services and routine tasks like
cleaning, disinfecting and monitoring in hospital settings [47,48].

AI in protein structure prediction
AI can help in predicting the structure of important proteins crucial for virus entry and replication and provide useful
insight that can pave way for drug development in a very short time. AlphaFold algorithm of Google Deep mind
employed deep residual networks (DRN) called ResNets for predicting protein structures of membrane protein,
protein 3a, nsp2, nsp4, nsp6 and papain-like C-terminal domain of SARS-CoV-2, which will give huge impetus to
drug discovery programs [49]. DeepTracer, a program based on customized deep convolutional neural network, was
used to derive protein complex structure of SARS-CoV-2 from high-resolution cryoelectron microscopy density
maps and amino acid sequence [50].

AI in development of therapeutics
AI techniques can boost and complement traditional technologies by reducing the time required in bringing a drug
from bench to bed by speeding up lead discovery, virtual screening and validation processes by a huge margin.
AI can also accelerate the pace by deriving useful data for drug repurposing or drug repositioning by screening
properties of already approved and validated drugs based on molecular descriptors and properties, which may not
be possible for a human expert. BenevolentAI used machine learning methods to accelerate its drug discovery
program and identified baricitinib as a potential drug against COVID-19 [51,52]. Insilico Medicine has identified
several small molecules against COVID-19 using AI [53]. Another study combined virtual screening and supervised
learning to identify potential drugs against COVID-19 [54]. Zhou et al. adopted an integrative network-based
systems pharmacological methodology for finding potential drugs for SARS-CoV-2 from the already existing
repertoire of drug molecules and drug combinations [53]. Several other AI-based endeavors including inclProject
IDentif.AI (identifying infectious disease combination therapy with artificial intelligence) [55] and PolypharmDB [56]

have been successful in identifying candidates against COVID-19. Many machine learning approaches and deep
learning-based applications are also being used for expediting the drug discovery process [57–60].

AI in development of vaccines
Never before has mankind witnessed such a race for the development of a vaccine against a pathogen. The pace
of the discovery can be accelerated manifold by harnessing the power of AI. Ong et al. predicted possible vaccine
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candidates for COVID-19 using the Vaxign reverse vaccinology-machine learning platform that relied on supervised
classification models [61].

AI in curbing spread of misinformation
Due to the avalanche of information, this pandemic has turned into an infodemic. Understanding knowledge,
awareness and practices toward COVID-19 by tapping information from social media platforms like Twitter,
Facebook etc. can help in devising the strategy to assemble and disseminate timely and correct information for
mitigating the impact of COVID-19 [62,63]. Machine learning techniques can be used to identify trends and
sentiment analysis and provide information regarding the origin of false information and help in curtailing the
rumors and misinformation [64]. AI techniques can further be used for presenting a clear picture of recovery rates,
accessibility and availability to healthcare and identification of the gaps. AI can provide the latest updates about the
emerging evidence in diagnosis, treatment, spectrum of symptoms and therapeutic outcomes in this highly dynamic
situation, which will help clinicians in real-world scenario and help public in overcoming fear and panic [65].

AI in genomics
Randhawa et al. devised a method for fast and accurate classification of available SARS-CoV-2 genomes by applying
machine learning on identified genomic signatures [51]. Wang et al. used ontology-based side effect prediction
framework and Artificial Neural Network to evaluate the side effects of Traditional Chinese Medicines for the
treatment of SARS-CoV-2 [66].

Conclusion & future perspective
Adopting a three-pronged approach based on testing, isolation and contact tracing is warranted to combat COVID-
19. It is necessary to exploit the available knowledge base to develop effective chemotherapeutic agents against
COVID-19, taking cues from lessons learnt in the past during other such outbreaks.

As there is no silver bullet available to cure the disease, we need to hasten progress on all fronts ranging from
surveillance and monitoring to prevention and treatment. As this is the third outbreak of a coronavirus in recent
times and many coronaviruses are circulating in animal reservoirs, we must focus on deciphering the molecular
mechanism of SARS-CoV-2 and other coronaviruses and increasing our preparedness by capacity building for
preventing future outbreaks [67]. As the current scenario warrants the need for immediate delivery of solutions,
response to this outbreak was hugely augmented by various digital technologies and AI [68]. AI was found to be
on par with and even more accurate than human experts in COVID-19 diagnosis and drug discovery. We need
bigger datasets for training AI models and a legal framework and ethical considerations for sharing data before
AI takes the forefront in diagnosis and other areas. Several bottlenecks in harnessing AI to its full potential in
the current scenario are availability and sharing of clinical and epidemiological data, computational resources,
scalability, privacy and ethical concerns.
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Chronic pain affects 20% of the global population and is incredibly complex to treat. The burden of
chronic pain is physical, emotional and financial, and prevalence rates continue to rise. Current treatments
are ineffective long-term against pain and common comorbidities, including anxiety and depression,
mood and sleep disorders, and social isolation. While a large body of evidence supports regular physical
exercise as an effective long-term treatment for chronic pain and its comorbidities, exercise-induced pain
and kinesiophobia are significant barriers to participation and adherence. Immersive virtual reality is a
powerful short-term pain reliever, that, when combined with exercise, can help overcome these barriers.
This perspective argues for the use of combined exercise and virtual reality treatment techniques to
mitigate chronic pain.

Plain language summary: Chronic pain affects 20% of the global population and is incredibly difficult
to treat. Chronic pain impacts physical and emotional health as well as one’s financial independence.
Current treatments are ineffective long-term against pain and common co-occurring symptoms, including
anxiety and depression, mood and sleep disorders, and social isolation. While research supports regular
physical exercise as an effective long-term treatment for chronic pain and its co-occurring symptoms,
exercise-induced pain and kinesiophobia (i.e., fear of movement) are significant barriers to participation.
Immersive virtual reality is a powerful short-term pain reliever, that, when combined with exercise, can
help overcome these barriers. This perspective argues for the use of combined exercise and virtual reality
treatment techniques to treat chronic pain.
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Chronic pain
Prevalence of chronic pain
After decades of ambiguity surrounding the diagnosis of chronic pain [1], the most recent International Classification
of Diseases (ICD-11) defines chronic pain as pain that lasts or recurs for more than 3 months [2]. Due to the complex
nature of this disease, there are two possible diagnoses: chronic primary pain, in which chronic pain is the disease
itself, and chronic secondary pain, in which chronic pain is a symptom of another underlying condition, such as
cancer or a neurological disorder [3,4]. Researchers and clinicians alike hope that with greater clarity and recognition
of chronic pain as a disease, more efficacious treatments will emerge to combat this ever-growing pandemic.

Approximately 20% of adults reported having chronic pain in USA and Europe in the early 2000′s, although
experts believe this is likely an underestimate due to capturing rates of chronic primary pain exclusively [5]. A recently
published paper from the Global Burden of Disease (GBD) study conducted in 2013 indicates that chronic pain
may not only be the most impactful cause of morbidity and disability around the world right now, but may also
pose the biggest health risk of the future [6].
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Figure 1. Virtual reality and exercise for chronic pain. This figure depicts the theoretical short-term and long-term
effects of VR alone (red), exercise only (blue) and the combination of VR and exercise (green) on pain intensity for
persons in chronic pain. In the short term, adding VR to exercise would lessen the initial increase in pain that
accompanies exercise that commonly hinders adherence to training. This combination would ultimately allow for
better long-term pain relief to exercise training alone.

Current treatment methods for chronic pain
Reliably effective treatments for chronic pain remain elusive, in large part, because of high inter-individual variability
of many factors from symptom manifestation to biological and neurological consequences of chronic pain. For
example, neurological studies have shown changes in motor and somatosensory processing in areas of the brain,
commonly referred to as the pain matrix, due to sustained pain, but these changes differ based on location, intensity
and duration of pain [7]. The high rate of comorbidities and subsequent behavioral changes associated with chronic
pain conditions, including sleep disorders, anxiety or depression, changes in mood, social isolation and physical
inactivity, have led many to believe that the most effective treatment for chronic pain will need to address several
factors using a combination of techniques [8,9]. Pharmacologic treatments for chronic pain are perhaps the most
commonly prescribed treatment, as it is by far the least complex and time intensive option for patients. Despite the
ease of use, there is equivocal evidence for the effectiveness of pharmacologic pain-relievers and physiological side
effects are commonly reported [10,11]. Opioids have emerged as the most popular pharmacologic remedy for chronic
pain, but overuse and misuse have led to bigger problems of dependency, substance abuse, and a nation-wide opioid
epidemic that has only compounded the already problematic burden of chronic pain [12].

Virtual reality & exercise for chronic pain
Immersive virtual reality (VR) and exercise, or regular physical activity (PA), are two potentially powerful treatment
methods for chronic pain and its most common comorbidities. Evidence suggests that each treatment method on
its own can improve pain. However, VR used alone in treatment only provides short-term pain relief, dissipating
quickly once the VR exposure ends. While exercise does provide significant long-term pain relief, exercise can
exacerbate pain in the short-term, which is a significant barrier to compliance and adherence. Therefore, we assert
that by combining VR and exercise, we can utilize the powerful short-term pain relief of VR to overcome the
immediate exercise-induced pain, thereby allowing persons with chronic pain to maintain exercise long enough to
gain long-term benefits. This hypothesis is depicted in Figure 1.

A brief history of VR
While the popularity and availability of VR has increased exponentially in the last two decades, the technology
has existed since the 1960′s, although the equipment was much bulkier and more restrictive than today’s headsets.
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Sutherland, the first well-known researcher of VR, defined the system as a “display connected to a digital computer
[that] gives us a chance to gain familiarity with concepts not realizable in the physical world” [13]. He quickly
realized how important complete immersion was to a person’s experience and how quickly and easily people bought
into being in a virtual environment (VE) [14]. Researchers in the 1990s strived to understand ways in which people’s
psychology and behavior changed while feeling present within a VE [15]. As early as 1999, the technology of VR was
such that it became more accessible to the general public, prompting an exponential rise into research conducted
exploring its potential value [16]. While the technology has greatly improved, and the possible applications of VR
have expanded significantly [17], some basic questions remain unanswered. For example, what aspects of VR change
human behavior the most and how does interpersonal variation moderate these effects? As research studies explore
potential uses of VR, the possibilities and unanswered questions continue to outpace the rate at which research can
answer those questions.

VR as a long-term pain-relieving technique for chronic pain
Evidence suggests that when VR is the sole treatment technique used to combat chronic pain, it is fairly ineffective.
While VR can significantly reduce pain ratings due to chronic pain conditions during and shortly after exposure,
the effects of VR are short-lived and do not mitigate long-term chronic pain. The success of VR for chronic pain is
seen primarily in treatment methods where VR is used as an adjunct to other evidence-based practices. For example,
VR combined with cognitive behavioral therapy has shown promise in helping people with chronic pain develop
better coping skills, which may indirectly improve their pain by improving their quality of life [18,19]. While this
area of research has become very popular in the last 10–15 years, researchers agree that more robust randomized
controlled trials are required before clinical recommendations can be made about VR-based treatment techniques
for people with chronic pain [20,21].

Exercise as a promising treatment for chronic pain
A large body of evidence suggests that regular PA and planned exercise are effective treatments for people with
chronic primary or secondary pain due to a wide array of causes [22–24]. There are a number of hypothesized exercise-
induced neurological and physiological changes that may explain reductions in chronic pain. Pain reduction due
to exercise may stem in part from the endogenous opioid system that is activated by the body’s interpretation of
exercise as stress [25,26]. Other hypotheses suggest that regular PA or exercise helps regulate dysfunctional central
pain inhibition and anti-inflammatory cytokines seen in those with chronic pain [25,27]. Finally, well-established
improvements in mood, anxiety, depression, self-efficacy, and stress adaptation from exercise, potentially via change
in the serotonergic system, may also contribute to the benefits of exercise on chronic pain by treating common
comorbid symptoms [28–31].

Exercise-induced pain is a barrier to exercise in chronic pain
Despite knowing that regular PA is an effective treatment for chronic pain, activity levels in persons with chronic
pain remain low, as they typically avoid activities that could exacerbate their pain [32]. Current pain and fear of
future pain are common barriers to activity reported by those with chronic pain [33,34]. It is difficult to counteract
this argument as exercise does cause pain in the short-term (i.e., exercise-induced pain).

Exercise-induced pain
Nociception is the biological process underlying the psychological construct of pain that people are familiar with.
O’Connor and Cook defined nociception as “the reception of signals in the central nervous system (CNS) that
are evoked by specialized sensory receptors (nociceptors) and that provide information about tissue damage or
potential tissue damage [35].” There are four types of skeletal muscle afferent fibers that transmit signals from
muscles to supraspinal brain. Type I and II afferents are not nociceptive and do not transmit pain-related signals.
Type III and IV, also called A-delta and C fibers, respectively, are nociceptive afferents that respond to different
painful stimuli. Type III fibers are mechanoreceptors that respond to high pressure stimuli while type IV fibers are
chemoreceptors that respond to noxious chemicals. The mechanism of naturally occurring pain due to activated
skeletal muscles during exercise, often described as ‘dull-aching or cramping-type pain’, is thought to involve both
of these nociceptive fiber types [35].

When muscles contract above a certain intensity, relative to an individual’s capacity, the resulting high pressure
will stimulate type III afferents. For example, cycling below 50% of peak power output is not painful, while cycling
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above 50% of peak power results in an intensity-dependent increase in quadriceps pain intensity (PI), which is
thought to be caused, in part, by nociceptive signals to the brain via high pressure sensitive mechanoreceptors. This
represents the initial, often described as ‘dull or aching’ pain people feel upon beginning exercise. With continued
exercise and muscle contractions, a multitude of chemicals build up in the muscles and activate type IV nociceptive
afferents. Anatomical studies in cats suggest there are about ten-times the amount of type IV nociceptive afferents in
skeletal muscles than nociceptive type III afferents, suggesting a greater role of type IV afferents in pain perception
during exercise [36]. Greater PI, often described as ‘burning’, is achieved by biomechanical activation of the larger
quantity of type IV nociceptive afferents. Some of these chemicals work by directly activating the afferent fibers,
such as bradykinin and potassium, while others work by sensitizing the afferent fibers, such as prostaglandins,
leukotrienes and hydrogen ions. These endogenous algesics (pain causing agents) are all synthesized and/or released
with tissue damage and/or high intensity muscle activity [35,37].

The most convincing evidence from human studies for the different roles of type III and IV nociceptive afferents
in exercise-related pain comes from the 1997 seminal research study by Cook and colleagues. Every participant in
this study experienced pain after cycling at 250 watts (W) for only 8 s. This is unlikely enough time for biochemicals
to build up to a high concentration within muscles, indicating that a nociceptive response to the pressure of muscle
contractions during exercise is enough for a person to perceive pain. Moreover, PI ratings were significantly higher
during longer duration exercise at every power level above 100 W that was studied, including 250 W. While
muscle biochemistry measures were not assessed in this study, the difference in PI ratings after significantly more
time exercising lends support to the notion that a buildup of biochemicals in the muscle caused greater perceived
pain [38]. Finally, lower ratings of PI during a short bout of cycling correspond to the dull aching or cramping
feelings often felt with type III afferents as opposed to the dull, aching, and burning feelings reported that increase
over time [35].

Cycling exercise
Cycling at any intensity above anaerobic threshold reliably causes quadriceps PI during exercise [39,40]. Muscle
recruitment during cycling is a specific, systematic and coordinated effort that leads to direct force being applied to
the crank to create the pedaling motion. Simply put, the hip and knee flexors lift to drive the pedal up and down.
Research has shown the knee extensor muscle group, primarily the quadriceps muscles, to be the most important
muscle group for cycling, as it provides the most force on the down stroke [41]. It logically follows that this muscle
group is the primary source of pain during cycling and is the focus of most research on exercise-induced pain.

Cycling is pursued for multiple reasons, including transportation to work, recreation, fitness and sport. Bicycling
is the sixth most common type of PA performed by adults in USA, with higher participation among men (6.3%)
compared with women (3.3%) [42]. World-wide surveys of fitness professionals showed that indoor cycling (aka
spinning) was especially popular from 2008 to 2012 [43]. High intensity interval training (HIIT), which typically
involves indoor cycling, has been ranked between the first and third most popular fitness trend from 2014 to
2017 [44]. The popularity of HIIT stems, in part, from the time efficiency of short high intensity exercise bouts
combined with evidence that cardiometabolic and physiological benefits of this exercise are comparable, if not
superior, to longer, more moderate bouts [45]. However, higher intensity cycling leads to greater quadriceps muscle
pain which may be a barrier to some.

Quadriceps pain during cycling may prevent people from adhering to cycling exercise training programs [46],
although this has not been tested directly for cycling exercise in healthy adults. Pain exacerbation during movement
has been shown to inhibit other types of exercise, such as breast pain reducing marathon running performance [47],
and to be a barrier to exercise for groups with chronic pain conditions, such as in people with fibromyalgia [48] and
osteoarthritis [49]. People with chronic pain conditions, or those going through physical rehabilitation for an injury
or post-surgery, are often encouraged to cycle, as it is non-weight bearing and safe to use without supervision.
However, people in chronic pain are less likely to commit to an activity like cycling that causes additional pain.

Virtual reality & exercise-induced pain
VR as a pain-relieving technique for acute pain
Several review papers published in the last decade have summarized work conducted on the success of VR on
acute pain in both laboratory and real-world settings. One review of 11 high caliber randomized controlled trials
(RCTs) reported a large mean effect size of VR on reducing pain (d = 0.94) caused by thermal stimuli or medical
procedures, such as wound redressing in burn injured patients. This pain relief was seen only while participants
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Figure 2. The virtual city scene that participants in the VR group interactively cycled through. The lower right shows
a participant cycling while wearing the headset.

were using the VR and the greatest relief came from VR that was immersive, interactive, and of high technological
quality [50]. A recent study echoes the significant effect of VR on experimentally induced pain from heat or pressure
stimuli [51].

The precise mechanism by which VR has such a powerful effect on acute pain continues to elude researchers.
One review article aimed to investigate psychological mediators of the analgesic effects of VR by evaluating 11
research studies that explored factors of immersion/presence, fun, and anxiety. Almost all studies that evaluated
immersion/presence, or the feeling of being in the VE [52], showed positive correlations with pain thresholds or
negative correlations with subjective PI ratings. All studies that measured fun showed strong positive correlations
between fun ratings and pain relief. While no studies measuring anxiety examined it as a mediating factor, partic-
ipants with lower baseline anxiety showed better pain reduction, indicating that anxiety may act as a moderating,
rather than a mediating, factor [53]. Presence was higher in high-technology VR and fun ratings were higher in
interactive VR, which may help explain why greater pain relief was previously reported in high-technology and
interactive VR [50].

Virtual reality to decrease exercise-induced pain
Only three studies to date have investigated the effects of VR on acute, exercise-induced muscle pain. The first
study elicited muscle pain with a continuous isometric biceps flexion of 20% of 1-repetition maximum (1RM) until
exhaustion in 80 healthy young adults randomized to a VR or non-VR group [54]. Compared with the non-VR
control group, mean biceps PI ratings for the VR group were lower after 1 and 2 min. Results showed enhanced
exercise performance in the VR group, but the time to exhaustion exercise test is significantly less reliable than fixed
time or distance trials [55].

The other two studies were conducted at the University of Georgia (UGA) and examined the effects of adding
VR to cycling exercise in healthy college-aged adults. In the first study, immersive and interactive VR was added to
Wingate sprints, or repeated 30-s sprint cycling trials at a high resistance (0.085 and 0.075 kilograms resistance to
the flywheel per kilogram body weight for males and females, respectively) [56]. Ninety-four healthy young adults
were randomized to cycle with one of two visual stimuli: the mental imagery group saw a static picture of a city scene
inside the head-mounted display (HMD) and were told to imagine they were cycling through that city during the
sprints, while the interactive VR group was immersed in a virtual city scene that they dynamically moved through
at the speed at which they pedaled (Figure 2).
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Figure 3. High and low perceptual load virtual environments. The virtual environment participants saw during the
10-min time trial in the (A) low perceptual load condition and (B) high perceptual load condition. The circle around
items does not appear in the VR but is just to show that these are items participants should identify to as targets for
the perceptual task.
Adapted from Wender et al., unpublished data [under secondary review].

Immediately following each sprint, PI [38] and ratings of perceived exertion (RPE) were measured using 0–10
category scales with ratio properties [57]. There was a significant group × time interaction found for PI, such that
in the VR condition, PI was 13.3% (M = 4.60 vs, 5.31, d = 0.28) and 11.8% (M = 5.68 vs 6.44, d = 0.27)
lower at trials two and three, respectively. This experiment was the first to demonstrate that, without impacting
cycling performance, there was a hypoalgesia (pain-reducing) effect of VR during brief, high intensity, painful,
cycling exercise [56]. This finding was especially significant as other pain-reducing techniques have failed to reduce
exercise-induced pain at such a high intensity [38,58–62]. This proof-of-concept study extended known effects of VR
on acute pain to exercise-induced pain, but the mechanism by which this occurred was still a mystery.

Perceptual load (PL) is operationally defined as the number of unique objects present in a visual environment
that may or may not be targets of interest. In the follow-up study at UGA, it was hypothesized that PL contributed
greatly to the highly distracting nature of immersive VR as it is incomparably greater than the PL in other visual
distractors, such as 2D videos [63]. According to the attentional load hypothesis, attention to one type of stimulus
will decrease the processing of other concurrent perceptual information due to the sharing of limited resources [64].
It follows that cycling within a VE with a higher PL would limit the processing of muscle pain more than cycling
within a VE with lower PL, where there is a greater capacity to process both the visual and muscle pain stimuli [65].
While this hypothesis is supported by previous studies where competing visual stimuli decreased the processing
of noxious stimuli [66–68], no experiment had tested it using exercise-induced painful stimuli and VR. Using a
within-subjects design, 43 healthy young adults completed a 10-min cycling time trial at a ‘hard’ intensity (RPE
15) under three conditions: no VR, low PL and high PL. The low and high PL conditions corresponded to the
easier and harder perceptual task that participants were asked to do while cycling (Figure 3).

Unexpectedly, PI was significantly greater in the low PL (d = 0.472) and the high PL (d = 0.391) conditions than
the no VR condition. Greater PI during the low PL condition was most likely explained by the significantly higher
cycling performance. It was hypothesized that greater PI in the high PL condition was related to the significantly
greater mental effort reported by participants, which related to less fun and more negative affect during exercise.
The primary conclusion was that an engaging, but relatively easy, perceptual task in a VE with a low PL motivated
participants to cycle harder despite reporting greater PI in their quadriceps muscles.

Conclusion
These three proof-of-concept studies support the pain-relieving effects of VR during exercise. Interactive and
immersive VR reduced exercise-induced pain during bicep curls and leg cycling at moderate and high intensity.
However, perceptual load, affect, and fun are important characteristics to attend to when designing a VE to exercise
in. As negative affect/emotions are so closely linked with pain, a VE that stimulates negative emotion may exacerbate
exercise-induced pain rather than alleviate it. These proof-of-concept studies in healthy individuals are a strong
starting point, but more research is required before this approach can be integrated into a treatment technique for
chronic pain.
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Future perspective
While it is difficult to make conclusions from three very different research studies, it is clear that future research is
warranted on the effects of VR on exercise-induced pain. For healthy individuals, attenuated pain during cycling
could allow them to increase the intensity and/or duration of their exercise, thereby potentially increasing the
health-related benefits of exercise or the ability to train for competition. For individuals with chronic pain, exercise
may be perceived as too painful, and therefore avoided, despite the evidence-based benefits [69]. Techniques that allow
for pain reduction during exercise, including VR, hold promise for breaking this fear-avoidance cycle. Specifically,
such techniques could create an environment in which a patient in pain can exercise with attenuated or minimal
pain and see clear mental and physical health benefits. This could also overcome the association of exercise with
pain exacerbation, which could lead to greater exercise adoption and maintenance, and ultimately contribute to
long-term physical and mental health benefits.

Employing VR in physical rehabilitation techniques for people with chronic pain has become very popular
over the last decade, but the research studies have most often led to conclusions that it works as well as standard
rehabilitation [70–72]. While outside the scope of this review, there may be promise in exergaming or VR-enhanced
physical rehabilitation for people with chronic pain conditions. However, current studies have not employed exercise
prescriptions previously shown to decrease pain, and have instead added VR to physical rehabilitation, which is
distinct from exercise or PA. Researchers claim that exergaming or VR-enhanced exercise improves chronic pain
outcomes because of decreased pain, greater enjoyment or higher motivation compared with standard home-based
physical therapy, but these outcomes are rarely measured directly [73]. Moreover, the majority of these studies utilize
non-immersive VR for fear of greater risk of simulator sickness, dizziness or nausea with immersive VR [74,75].
However, the experiments conducted combining exercise and cycling demonstrated that, with proper precautions,
there is no reason to avoid using immersive VR with seated, cycling exercise.

Some studies have begun to explore and directly measure factors that might explain how VR-based treatments
improve chronic pain, including a reduction in kinesiophobia or pain catastrophizing [76,77], increased motivation
and enjoyment [78,79], or decreased perceived exertion during exercise [80]. More research is warranted to provide
enough evidence that VR and exercise is a clinically safe and effective treatment method to combat all-cause chronic
pain. This unique treatment modality could be incredibly impactful for the large population of people worldwide
struggling with chronic pain conditions.

Executive summary

• The incidence rates of chronic pain globally continue to rise, meaning that effective, long-term treatment
techniques still elude researchers and clinicians.

• The most common method of treatment today is pharmacological, which has shown equivocal results with
dangerous side effects, including the long-time opioid epidemic.

• Aerobic exercise is an effective long-term treatment for chronic pain and co-occurring mental health issues, but
common barriers to exercise in persons with chronic pain is exercise-induced pain and the fear that exercise will
exacerbate current pain (i.e., kinesiophobia).

• Current exercise interventions do not target these aforementioned barriers, which leads to deconditioning,
sedentary behavior, and a resurgence of chronic pain and subsequent negative consequences.

• Immersive virtual reality is a powerful tool for pain relief under acute pain stimuli, including exercise-induced
pain, and should be utilized in exercise-based treatments to mitigate short-term barriers to exercise for people
with chronic pain.

• Virtual reality has shown greatest success against chronic pain when combined with other effective, long-term
treatment methods.
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Aim: Salivary miRNA can be easily accessible biomarkers of alcohol dependence (AD). Materials & meth-
ods: The miRNA transcriptome in the saliva of 56 African–Americans (AAs; 28 AD patients/28 controls)
and 64 European–Americans (EAs; 32 AD patients/32 controls) was profiled using small RNA sequencing.
Differentially expressed miRNAs were identified. Salivary miRNAs were used to predict the AD presence
using machine learning with Random Forests. Results: Seven miRNAs were differentially expressed in AA
AD patients, and five miRNAs were differentially expressed in EA AD patients. The AD prediction accu-
racy based on top five miRNAs (ranked by Gini index) was 79.1 and 72.2% in AAs and EAs, respectively.
Conclusion: This study provided the first evidence that salivary miRNAs are AD biomarkers.
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Alcohol dependence (AD) is a common, complex and genetically influenced disorder. A reliable diagnostic tool
for AD is needed to support efforts at prevention and treatment of the disorder. A current AD diagnosis depends
primarily on self-reported symptoms, which are limited by inaccurate recall or reluctance of patients to give accurate
information on their drinking behaviors or alcohol-related problems. Thus, there is considerable interest in the
identification of biological measurements (or biomarkers) to assess a patient’s current or past alcohol use.

Biochemical markers such as liver enzymes (e.g., γ-glutamyltransferase, aspartate aminotransferase and alanine
aminotransferase) have been used to detect excessive ethanol consumption [1]. However, patients with liver diseases
also have increased levels of these liver enzymes. Elevated erythrocyte macrocytic volume (MCV) is also common
in AD patients [2], but the slow return of MCV to the reference value diminishes its potential as a relapse
marker. Moreover, patients with macrocytic anemia also have an increased MCV [3]. Blood levels of alcohol and its
byproducts (such as acetaldehyde, ethyl glucuronide and fatty acid ethyl ester) can reflect acute alcohol ingestion
but not past drinking patterns or alcohol relapse [4]. Phosphatidylethanol (PEth), another byproduct of ethanol, can
reflect drinking over the preceding weeks [5]. Most of the above biochemical markers (excluding PEth) are limited
by their sensitivity and specificity in assessing alcohol abuse.
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Genetic and epigenetic factors are potential biomarkers of AD. Genome-wide association studies have identified
AD-associated genetic variants, particularly those located in alcohol-metabolizing enzyme genes [6,7]. Nevertheless,
the effect size of these genetic variants on AD risk is small [8]. So far, no genetic markers have been used as practical
biomarkers for diagnosis of AD. Epigenetic markers, particularly miRNAs, are potential AD biomarkers. miRNAs
are a class of small noncoding RNA molecules (containing about 22 nucleotides) that regulate gene expression
via either translational repression or mRNA degradation at the post-transcriptional level [9–11]. As each miRNA
can target multiple mRNAs and each mRNA can be regulated by multiple miRNAs, miRNAs play diverse roles
in many cellular processes [12]. miRNAs have been implicated in a number of diseases, particularly cancer [13].
Evidence from rat [14] and human post mortem brain [15,16] studies suggest that adaptations to alcohol may be due
in part to altered expression of a group of miRNAs and their target genes.

Although information on miRNA expression in postmortem brains of patients is critical for unraveling the
epigenetic mechanisms of neuropsychiatric disorders including AD, it is of little use clinically because brain tissues
are not easily accessible. Besides the existence of miRNAs in tissues and cells, miRNAs are also present in extracellular
or body fluids including saliva. Extracellular miRNAs are highly stable and also RNase resistant because they are
either contained in membranous vesicles [17,18] or bound to Argonaute proteins [19] or HDL [20]. There is evidence
that extracellular miRNAs (such as salivary miRNAs) can serve as informative biomarkers for assessing the severity
or presence of diseases [21,22]. However, no study is known to have examined miRNA expression alterations in the
saliva of AD subjects.

In the present study, we investigated whether salivary miRNAs are potential biomarkers for detection of AD.
We first used miRNA sequencing (miRNA-seq) technology to profile miRNA transcriptomes in the saliva of AD
patients and healthy control subjects from both African–American (AA) and European–American (EA) populations.
We then identified salivary miRNAs that are differentially expressed in AD patients, and used a machine learning
approach to explore the utility of salivary miRNAs as biomarkers for identifying AD.

Materials & methods
Participants
56 African–Americans (AAs; 28 AD patients and 28 control subjects) and 64 European–Americans (EAs; 32 AD
patients and 32 control subjects) participated in the present study. Participants were recruited from the community
using advertisements such as posted bulletin board flyers and online advertising as well as word of mouth referrals.
Participants were screened via telephone and scheduled for appointments if they met the inclusion/exclusion criteria.
They were interviewed at the Yale University School of Medicine (APT Foundation; CT, USA). All subjects gave
written informed consent to participate in the study. They were assessed using the Semi-Structured Assessment for
Drug Dependence and Alcoholism [23,24] to derive diagnoses for lifetime substance use disorders including AD.
All subjects were not affected with major psychotic disorders (schizophrenia and bipolar disorder). Among the
60 AD patients, 88.3% of them had one or more co-morbid other substance use disorders (such as cocaine, opioid,
nicotine, marijuana, sedative and stimulant dependence). Control subjects were not affected with these substance
use disorders. The participants were not seeking treatment, and abstinence from substances was not an inclusion
criterion for either group. Demographic characteristics of the sample are summarized in Table 1.

Saliva collection & total RNA extraction
Saliva samples were collected from the above 120 subjects (56 AAs and 64 EAs). Subjects were asked to refrain
from eating, drinking, smoking or chewing gum for 30 min before giving saliva samples. Whole saliva (about
2 ml) was collected using the Oragene•RNA (RE-100) for Expression Analysis Self-Collection Kit (DNA Genotek,
Ottawa, Canada). Total RNA was extracted from the cell-free supernatant using the TRIzol LS Reagent (Life
Technologies, CA, USA). Extracted RNA samples were further purified using the Agencourt RNAClean XP Kit
(Beckman Coulter, MA, USA). RNA was quantified using a NanoDrop 8000 Spectrophotometer (Thermo Fisher
Scientific, MA, USA). The size distribution and quality of extracted RNAs were assessed on an Agilent 2100
Bioanalyzer using an Agilent RNA 6000 Nano Chip. The RNA yield was about 150 ng/ml of saliva supernatant,
and the mean RNA integrity number was 6.7.

miRNA-seq library preparation & sequencing
miRNA-seq was conducted at the Yale Center for Genome Analysis. Total RNAs (250 ng) extracted from saliva
were used to construct small RNA sequencing libraries using the NEBNext R© Multiplex Small RNA Library Prep
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Table 1. Demographic information of the sample.
Demographic
categories

African–Americans �2/t-test European–Americans �2/t-test

AD cases (n = 28) Controls (n = 28) AD cases (n = 32) Controls (n = 32)

Sex, males 12 (42.9%) 12 (42.9%) � 2 = 1.00, p = 1.000 16 (50.0%) 16 (50.0%) � 2 = 1.00, p = 1.000

Age, year
(mean ± SD)

39 ± 13 39 ± 12 t = -0.11, p = 0.915 40 ± 12 46 ± 16 t = 0.99, p = 0.324

RIN (mean ± SD) 6.7 ± 1.7 6.3 ± 1.8 t = -0.86, p = 0.392 7.2 ± 1.2 6.7 ± 1.6 t = -1.34, p = 0.186

Co-morbid substance use disorders:

– Cocaine
dependence

11 (39.3%) 0 (0%) – 23 (71.9%) 0 (0%) –

– Opioid dependence 4 (14.3%) 0 (0%) – 17 (53.1%) 0 (0%) –

– Nicotine
dependence

12 (42.9%) 0 (0%) – 21 (65.6%) 0 (0%) –

– Marijuana
dependence

20 (71.4%) 0 (0%) – 11 (34.4%) 0 (0%) –

– Sedative
dependence

1 (3.6%) 0 (0%) – 8 (25.0%) 0 (0%) –

– Stimulant
dependence

1 (3.6%) 0 (0%) – 4 (12.5%) 0 (0%) –

AD: Alcohol dependence; RIN: RNA integrity number; SD: Standard deviation.

Set for Illumina R© (Set 1; New England Biolabs, MA, USA) following the manufacturer’s instruction manual. First,
the 3′ SR adaptor was ligated to the 3′ end of RNAs, the reverse transcription primer was hybridized to the excess
of the 3′ SR adaptor, and the 5′ SR adaptor was ligated to the 5′ end of the RNAs. Then, the ligation products were
subjected to reverse transcription reactions to create single-stranded cDNAs. To enrich fragments with adapters
on both ends selectively, cDNAs were amplified with 15 cycles of PCRs using a common primer and a primer
containing an index tag (6 nt), which facilitated multiplexing and sequencing of different samples in a single lane
of a flow cell. Size selection of miRNA-seq libraries (bands of 147 bp, corresponding to the size of adaptor-ligated
miRNAs) was performed on a 6% polyacrylamide gel. The size, purity and concentration of miRNA-seq libraries
were further assessed on an Agilent 2100 Bioanalyzer using a DNA 1000 chip. Finally, libraries generated from 12
salivary RNA samples were pooled and loaded in one lane of a flow cell for cluster formation. The colonized DNA
served as the template for single-end 75-cycle sequencing using the HiSeq 2500 Sequencing System (Illumina, CA,
USA).

miRNA-seq data processing
Raw sequence reads were processed by the Mapper module of miRDeep2 (v2.0.0.8) [25] to remove entries with
noncanonical letters, clip the 3′ adaptor sequence AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC, dis-
card sequence reads shorter than 18 nt and collapse identical sequence reads. Mapping sequence reads to the
human genome (hg19) was performed by miRDeep2 mapper.pl script with the ‘-e -q -r 100 -s -h -n -m -j -l 18 -k
AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC’ options. The output files with sequence reads mapped
to the human genome (hg19) were further processed with the miRDeep2.pl script to identify human miRNAs
that were annotated in the miRBase database (v20) [26]. The total number of sequence reads for each miRNA was
normalized to counts per million (CPM) by the total number of mapped sequence reads per sample. Three samples
(one AA control sample and two EA control samples) were failed in miRNA-seq.

miRNA differential expression analysis
We performed miRNA differential expression analysis with the Bioconductor package edgeR [27,28]. miRNA
expression levels (or counts of miRNAs per sample) were imported to edgeR and converted to CPM. The CPM
were then normalized using the method TMM (trimmed means of M-values), which removed the miRNAs that
were extremely low or high in expression and those that differed extensively across samples. The negative binomial
distribution was used to model the variance of miRNA expression levels. A generalized linear model framework
was used to compare miRNA expression differences between cases and controls, which included covariates sex, age,
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and RNA integrity number (RIN). To identify common salivary miRNAs as biomarkers of AD, only those with
CPM ≥100 in at least half of the subjects were retained in the AD prediction analysis.

miRNA target gene prediction & functional annotation
Genes (or mRNAs) potentially targeted by differentially expressed miRNAs were predicted using miRWalk (v3.0),
the online Database on Predicted and Validated miRNA Targets [29,30]. Target genes with a prediction score of
more than 0.8 and validated by a third party database such as TargetScan [31], miRDB [32] or miRTarBase [33] were
subjected to gene annotation enrichment analysis, which was performed using the online Database for Annotation,
Visualization and Integrated Discovery (DAVID; v6.8) [34].

Machine learning & AD prediction by salivary miRNAs
A Random Forest (RF) machine learning approach was applied to identify influential miRNAs for AD prediction
using the randomForest R package [35]. An RF model was run using the AD status and miRNA expression levels of
subjects in the dataset. The RF algorithm treated the expression level of each miRNA as a different variable in each
decision tree and calculated each variable’s importance to the model. Included in the importance calculation was
each variable’s Gini index [36], a measure of the importance of miRNAs in the RF model in predicting the disease
status of subjects. In this study, each miRNA was assigned a Gini index based on its contribution to differentiate
samples of AD and control subjects. The top ten, five or three miRNAs ranked by the Gini index were applied in
AD prediction. The dataset was divided into training and test sets using random sampling for multiple train/test
ratios: 50, 60, 70, 80 and 90%. An RF neural network model was created using the training dataset containing the
case and control phenotype information. AD prediction was then performed using the RF neural network model
on the test dataset. A confusion matrix was generated by comparing the predicted AD status of subjects to their
actual status in the test dataset, which yielded the accuracy, sensitivity and specificity of the prediction analysis. The
analysis for each ratio was performed ten-times, each time using a seed generated from a different random number.
The mean of each of the above three statistics (accuracy, sensitivity and specificity) in ten permutations served as
the final result.

Results
Differentially expressed salivary miRNAs in AD subjects
The average number of miRNA-seq reads per AA subject was 2,313,896 (±1,731,731), with 29.0% of the sequence
reads mapped to the human genome and 0.2% mapped to human miRNA sequences. The average number of
miRNA-seq reads per EA subject was 2,193,734 (±1,486,205), with 27.6% of the sequence reads mapped to the
human genome and 0.2% mapped to human miRNA sequences. Among 2,588 different miRNAs detected in the
saliva, 399 were expressed at a level of no less than 100 CPM in at least half of the subjects. Expression differences of
these 399 miRNAs between cases and controls were analyzed by edgeR, and the results were visualized by volcano
plots (Figure 1A & B). A list of miRNAs with p < 0.050 and FC (fold-change) >2 is provided in Table 2. Seven such
miRNAs (miR-451a, miR-10a-5p, miR-100-5p, miR-3613-5p, miR-7704, miR-1290 and miR-4488) in AAs and
five such miRNAs (miR-126-3p, miR-10a-5p, miR-1290, miR-4488 and miR-1273h-5p) in EAs were identified.
Although the results did not withstand multiple testing correction (false discovery rate >0.05), expression changes
of three miRNAs (miR-10a-5p, miR-1290 and miR-4488) were cross-validated in both AAs and EAs. They showed
similar fold changes and the same direction of expression changes in both AA and EA AD subjects.

Pathways enriched in genes potentially targeted by differentially expressed miRNAs
Genes potentially targeted by the above three cross-validated miRNAs (miR-10a-5p, miR-1290 and miR-4488)
were predicted by MiRWalk and validated by TargetScan, miRDB or miRTarBase. When the miRWalk prediction
score was set at 0.8, 16 genes were predicted to be targets of miR-10a-5p, 104 genes were predicted to be targets of
miR-1290, and 46 genes were predicted to be targets of miR-4488. Genes potentially targeted by these miRNAs
were significantly overrepresented in gene ontology categories of DNA binding for miR-10a-5p (PBonferroni = 0.019),
alternative splicing for miR-1290 (PBonferroni = 0.021), and calcium-dependent cell–cell adhesion for miR-4488
(PBonferroni = 0.001) (Supplementary Table 1).
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Figure 1. Volcano plot of miRNA expression changes. The volcano plot shows miRNA expression changes in the
saliva of AAs (A) and EAs (B). The y-axis corresponds to the log10(p-value), and the x-axis displays the log2 fold change
value. The red dots represent differentially expressed miRNAs with p < 0.01; the blue dots represent differentially
expressed miRNAs with p < 0.05; and black dots represent miRNAs whose expression levels did not reach statistical
significance (p > 0.05).
AA: African–American; EA: European–American.

Table 2. Differentially expressed miRNAs in the saliva of subjects with alcohol dependence.
In AAs logFC logCPM LR p-value FDR

hsa-miR-451a 1.93 10.75 7.49 0.006 �0.05

hsa-miR-10a-5p† 2.18 12.72 5.83 0.016 �0.05

hsa-miR-100-5p 1.43 12.49 4.79 0.029 �0.05

hsa-miR-3613-5p 1.77 10.71 4.22 0.040 �0.05

hsa-miR-7704 -1.07 11.93 4.21 0.040 �0.05

hsa-miR-1290† -1.12 11.58 4.15 0.042 �0.05

hsa-miR-4488† -1.06 12.64 4.15 0.042 �0.05

In EAs logFC logCPM LR p-value FDR

hsa-miR-126-3p 2.00 12.90 6.77 0.009 �0.05

hsa-miR-10a-5p† 2.30 12.75 6.49 0.011 �0.05

hsa-miR-1290† -1.35 11.40 6.17 0.013 �0.05

hsa-miR-4488† -1.11 12.98 4.35 0.037 �0.05

hsa-miR-1273h-5p -1.98 13.48 4.26 0.039 �0.05

†Consistent results in both AAs and EAs.
AA: African–American; EA: European–American; FDR: False discovery rate; logCPM: log2(counts per million); logFC: log2(fold change); LR: Likelihood ratio.

AD prediction by machine learning
The machine learning RF algorithm was used to define a cluster of miRNAs that predict AD status. Based on the
expression levels of 399 common salivary miRNAs and the AD status of each subject, the RF algorithm constructed
a multitude of decision trees at the training time and then output the mode of classes. Each miRNA was assigned a
Gini index based on its contribution to differentiate samples of AD and control subjects. The Gini index of the top
ten miRNAs in AAs and EAs are shown in Figure 2A & 2B, respectively. When the top five miRNAs (ranked by
Gini index or their importance to AD prediction) were included in RF prediction analyses using a train/test sample
ratio of 80/20, the AD prediction accuracy was 79.1 and 72.2% in AAs and EAs, respectively (Table 3). Inclusion
of the top ten miRNAs (ranked by Gini index or their importance to AD prediction) in the RF prediction analyses
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Figure 2. Machine learning-generated Gini indexes of the top ten miRNAs. The x-axis corresponds to Gini indexes generated by the
Random Forest machine learning algorithm. The y-axis corresponds to the top ten miRNAs in AAs (A) and EAs (B).
AA: African–American; EA: European–American.

decreased the AD prediction accuracy to 73.6% in AAs but slightly increased it to 75.4% in EAs. If the top three
miRNAs (ranked by GINI index or their importance to AD prediction) were included in RF prediction analyses,
the AD prediction accuracy was decreased in AAs (76.4%) and to a greater extent in EAs (64.6%).

Discussion
The identification of disease-specific biomarkers in easily accessible body fluids such as saliva can result in the early
diagnosis and treatment of diseases. Given the important role of miRNAs in post-transcriptional regulation of gene
expression and their stability and detectability in saliva, salivary miRNAs have been proposed as specific and reliable
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Table 3. Random Forest prediction of alcohol dependence using miRNAs with the highest values of Gini index.
African–Americans European–Americans

Train/test Accuracy (%) Sensitivity (%) Specificity (%) Train/test Accuracy (%) Sensitivity (%) Specificity (%)

Predicted by top ten miRNAs

50/50 70.4 76.2 65.0 50/50 65.8 65.1 67.3

60/40 68.6 72.8 64.8 60/40 66.8 69.7 64.5

70/30 71.8 75.0 66.5 70/30 72.1 74.2 70.5

80/20 73.6 79.2 67.6 80/20 75.4 77.1 73.6

90/10 68.3 66.0 71.7 90/10 74.3 89.0 56.7

Predicted by top five miRNAs

50/50 69.3 75.5 63.9 50/50 64.8 66.3 63.9

60/40 70.5 74.8 66.1 60/40 67.2 67.3 67.8

70/30 75.9 79.9 70.1 70/30 72.6 72.0 72.5

80/20 79.1 84.9 71.5 80/20 72.2 71.0 73.9

90/10 78.3 87.7 72.5 90/10 65.7 75.0 54.2

Predicted by top three miRNAs

50/50 67.1 76.4 57.8 50/50 62.6 65.4 60.9

60/40 68.8 74.6 58.2 60/40 66.0 70.9 60.4

70/30 75.9 79.9 70.0 70/30 66.3 68.8 63.4

80/20 76.4 87.4 61.1 80/20 64.6 66.7 60.0

90/10 75.0 89.7 56.7 90/10 68.6 76.5 51.7

Top ten miRNAs in African–Americans (ordered by Gini indexes from high to low): miR-1303, miR-4792, miR-499a-5p, miR-4488, miR-619-5p, miR-324-5p, miR-151b, miR-4763-5p,
miR-151a-5p, miR-1307-5p.
Top ten miRNAs in European–Americans (ordered by Gini indexes from high to low): miR-1303, miR-6499-5p, miR-27a-5p, miR-589-5p, miR-4488, miR-499a-5p, miR-1307-5p, miR-324-
5p, miR-378a-3p, and miR-4763-5p.

biomarkers for the noninvasive diagnosis of diseases, including AD. The present study provided initial evidence
that salivary miRNAs are potential biomarkers for AD prediction.

First, we identified differentially expressed miRNAs in the salvia of AD subjects by miRNA-seq. Three AD-
associated miRNAs (miR-10a-5p, miR-1290 and miR-4488) were cross-validated in both AAs and EAs. In addition,
four miRNAs (miR-451a, miR-100-5p, miR-3613-5p and miR-7704) were specific for AA AD subjects and two
miRNAs (miR-126-3p and miR-1273h-5p) were specific for EA AD subjects (Table 2). The identification of
population-specific miRNAs for AD is not surprising. It is known that gene expression can be population-specific [37],
and subjects from different ethnic groups can have different vulnerabilities to AD [38]. Population-specific miRNAs
for AD may confer susceptibility of subjects from a specific ethnic group to AD. Because the same set of genes
may participate in reward pathways and addiction in subjects from different populations, a set of miRNAs that
regulate the expression of these genes may show differential expression in AD subjects from different populations.
Our miRNA differential expression analysis considered only common miRNAs (i.e., miRNAs with CPM no less
than 100 in at least half of the subjects), even though miRNA-seq can detect miRNAs expressed at a level of a
single copy. Because miRNAs present at low levels cannot be accurately quantified and low-expression miRNAs
may be indistinguishable from sampling noise [39], low-expression miRNAs are inadequate as biomarkers for disease
prediction. Therefore, we excluded low-expression miRNAs from our analyses in order to maximize the sensitivity
of detecting differentially expressed miRNAs.

Second, our study demonstrated that salivary miRNAs could be used as biomarkers for AD prediction. A
cluster of five miRNAs could achieve a prediction accuracy of over 70% for AD (Table 3). Although certain liver
enzymes and alcohol metabolites have been evaluated as AD predictors, their limited specificity precludes them
as biomarkers for the diagnosis of AD [1,4]. Specific and reliable biomarkers need to be developed to supplement
or replace biochemical measurements in order to predict AD with high confidence. To our knowledge, no other
published studies have explored the potential use of salivary miRNAs as biomarkers of AD. miRNAs have been
incorporated in the diagnosis of several other diseases particularly cancers [40,41]. There is evidence that miRNA
expression profiles can more accurately cluster poorly differentiated tumors than mRNA profiles [42]. In contrast to
the relatively small differences in mRNA expression levels between cancer and normal cells, the expression levels of
miRNAs can exhibit fold changes of tens to hundreds [43]. In the present study, we found that a cluster of salivary
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miRNAs predicted AD with an accuracy of 79.1% in AAs and 72.2% in EAs (Table 3). In comparison to the
predictive accuracy of miRNAs in physical diseases such as cancers (97.6% for lung cancer, 97.8% for hepatocellular
carcinoma, and 95.0% for bladder carcinoma in a study with 41 lung cancer samples, 47 hepatocellular carcinoma
samples and 20 bladder cancer samples as well as adjacent or normal tissues as controls) [44], the miRNA prediction
accuracy of AD was relatively low. This may be due to the heterogeneity of AD, which is a complex genetic disorder
in which there are substantial gene–environment interactions. In contrast, cancer biomarkers often are derived from
somatic mutations [45], which are often more readily assessed and show greater variation than germline mutations
such as those contributing to complex diseases like AD.

Third, our findings showed the utility of a machine learning approach in the development of an effective
prediction system for AD. The traditional multivariate logistic regression model is commonly used to predict the
outcome of a categorical dependent variable (e.g., a disease phenotype) from a set of predictors or independent
variables. However, the success of logistic regression model (either forward or backward stepwise) for disease
prediction depends on (1) choosing the correct predictor variables, (2) avoiding inclusion of highly correlated
variables which can reduce model efficiency, and (3) not including too many predictor variables which can lead
to model over-fitting. The major difference between the traditional approach and the machine learning approach
for disease prediction is the number of predictor variables that can be considered initially. Our application of
the RF-based machine learning prediction algorithm considered 399 common salivary miRNAs from which it
extracted a small number of miRNAs for inclusion in the highest performing predictive model. Of interest, the
prediction accuracy was not improved when using the top ten versus the top five miRNAs based on the Gini scores,
suggesting the number of potentially useful miRNAs in AD prediction is limited. However, the prediction accuracy
was reduced when using too few miRNAs (e.g., only the top three miRNAs based on the Gini scores) (Table 3).
Including too many predictor variables can dilute the true association and lead to a large standard error with a wide
and imprecise confidence interval. Conversely, including too few predictor variables can lower the predictive power
of the model.

Fourth, our machine learning prediction analysis results indicated that it was more favorable to use Gini
score-ranked top miRNAs than differentially expressed miRNAs in AD prediction. When the train/test ratio
was 80/20 and differentially expressed miRNAs (p < 0.05 and logFC > 1) were included in the prediction
analysis, the prediction accuracy was 63.6% in AAs and 56.2% in EAs (Supplementary Table 2). This suggests
that a cluster of miRNAs generated by machine learning could be more powerful in predicting disease status than
using differentially expressed miRNAs identified by statistical analysis, although the top miRNAs (e.g., miR-4488)
generated by machine learning were also differentially expressed in AD subjects. We also noticed that the prediction
accuracy was improved when the train/test ratio was increased (Table 3 & Supplementary Table 2). Previous
studies have demonstrated that the training sample size is critical for training good classifiers [46]. In other words,
more training data decrease the variance of the model, making it a more accurate general representation, and thus
decreasing model overfitting.

Fifth, our study suggested that the integration of both machine learning and miRNA-seq approaches could
yield a more precise prediction of AD. miRNA-seq is a type of RNA sequencing method (RNA-seq) for use in
miRNA transcriptome profiling using a next-generation sequencing platform. It has higher detection sensitivity
and specificity than gene expression microarray technology [47]. miRNA-seq can distinguish miRNAs with similar
sequences and thus detect miRNA isoforms and novel miRNAs. When profiling miRNA transcriptomes in the
saliva of human subjects by miRNA-seq, there is a concern that oral bacterial small RNAs can contaminate the
sample. To avoid this, we aligned the sequences of 2588 miRNAs detected in the saliva of our AA and EA
subjects against bacterial RNA sequences from the Human Oral Microbiome Database (www.homd.org). None of
these salivary miRNA sequence reads were mapped to bacterial RNA sequences. Thus, miRNA-seq plus optimal
sequence mapping algorithms facilitate accurate detection of human salivary miRNAs. The development of the
disease prediction system using miRNA transcriptome profiling and machine learning is a novel approach with
important potential clinical applications.

Conclusion & future perspective
Taken together, we described a method using miRNA-seq and RF-based machine learning to identify a cluster of
salivary miRNAs as AD classifiers or predictors. We expect that this type of prediction system could be extended
to other diseases based on miRNA expression changes that may also be present in the saliva of patients affected
with them. To increase disease prediction accuracy, one could expand the machine learning component to include
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additional types of biomarkers such as genetic variants and other epigenetic markers (DNA methylation and histone
protein modifications), which regulate gene expression at the transcriptional level. This comprehensive approach
could improve the diagnosis and treatment of a variety of diseases.

Summary points

• The current diagnosis of alcohol dependence (AD) depends primarily on self-reported symptoms. These may be
augmented by alcohol-related biomarkers that reflect alcohol drinking patterns. The present study aimed to
investigate whether salivary miRNAs are easily accessible AD biomarkers.

• We performed the first exploratory study on differential expression of salivary miRNAs in patients with AD in two
populations (African–Americans [AAs] and European–Americans [EAs]) and using salivary miRNAs as easily
accessible biomarkers to predict the presence of AD by the Random Forest machine learning method.

• Seven miRNAs were differentially expressed (p < 0.05 and > two-fold change) in AA AD patients, and five
miRNAs were differentially expressed (p < 0.05 and > two-fold change) in EA AD patients. Three of the above
salivary miRNAs (miR-10a-5p, miR-1290 and miR-4488) showed the same direction of expression changes in both
AA and EA AD subjects. These three miRNAs potentially target genes involved in DNA binding, alternative
splicing or calcium-dependent cell–cell adhesion.

• When the train/test sample ratio of 80/20 and the top five mRNAs (ranked by Gini index or their importance to
AD prediction) were integrated in Random Forest prediction analyses, the AD prediction accuracy was 79.1 and
72.2% in AAs and EAs, respectively.

• These findings reflect miRNA expression changes in the saliva of AD patients, providing evidence that salivary
miRNAs are potential biomarkers that identify the presence of AD. The findings need to be validated in a larger
sample.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.futuremedicine.com/doi/full/

10.2217/epi-2018-0177
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Artificial intelligence (AI) has been making tremendous strides in cancer research, especially in the domain of
diagnosis, grading, management and prognosis [1]. AI models demonstrated superior predictive performance
compared with traditional statistics in a majority of solid tumors [2]. AI-based cancer prognostication has harnessed
various factors such as patient characteristics (age, gender, habit, socio-economic status, etc.), tumor characteristics
(type, site, stage, grade, etc.), environmental factors (diet, smoking, alcohol, etc.), imaging findings (computed
tomography, MRI, nuclear imaging, etc.) and molecular marker expressions [3]. Although the understanding of
carcinogenesis is evolving day by day due to recent advances, it is still considered a highly complex event. Such
complexities are responsible for intra-tumoral (within a tumor) and inter-tumoral (tumor by tumor) heterogeneities,
which can impact the prognostication of cancer. Whether such complexities also impact AI-based prognostication
is an important question and needs critical deliberation. With this view in mind, we appraised parameters that can
impact AI decision-making in determining cancer prognosis. An understanding of these parameters would certainly
enhance the perception of AI scientists and generate more research questions.

Molecular pathogenesis
In the human body, 100 trillion cells make up a network of cellular galaxies. Within a single cell, around 25,000
types of proteins and billions of their copy numbers create a part of these molecular galaxies that contribute
to the complexity and heterogeneity of a single cell. Besides proteins, other molecular components such as
water, ions and simple molecules add another level of molecular complexity. Moreover, 100 trillion cells interface
with environmental factors, including diet, pollution, smoking, radiation, drugs and an environmental threat of
electromagnetic radiation and silicon dioxide exposure from e-waste [4]. All together, normal cells in a healthy
individual have enormous complexities that need to be well understood by AI scientists to further realize the
complexities of carcinogenesis.

The molecular complexities further intensify when normal cells transform into malignant cells. Thousands of
molecules and signaling pathways are altered to achieve survival, proliferation, invasion and migration goals [5].
Tumor-wise compositional variation in the tumor microenvironment further adds fuel to this complexity [6]. A
great deal of intra-tumoral and inter-tumoral heterogeneity is attributed to the differential expression of signaling
pathways and the tumor microenvironment and thus becomes an important predictor of biological behavior and
the prognosis of a cancer patient. Although scientists are making efforts to quantify noncancerous cell populations
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using computational algorithms with different statistical frameworks and datasets [7], this important proposition
has never been accounted for in AI-based predictive cancer research. After realizing this fact, AI scientists will need
to incorporate molecular signatures along with tumor microenvironment status.

Psychological stress
It is a well-established fact that psychological stress and associated molecular events can initiate as well as promote
carcinogenesis [8]. It can modulate the cancer-associated signaling pathways and leads to aggressive phenotypes in
cancer. Invariably, psychological and emotional problems are an integral part of cancer patients’ lives and have
become an important determinant of prognosis [9]. It is well known that psychological interventions have a positive
impact on the prognosis of a patient [10]. Despite this fact, psychological interventions in cancer patients are
not routinely practiced in many low- and middle-income countries [11]. Incorporation of psychological status and
intervention aspects into AI-based cancer prediction has not been attempted in the literature. In this regard, the only
available study showed the highest prediction score of 81.2% by AI for psychological stress (elevated ACTH levels)
in breast cancer patients [12]. However, ACTH levels are not the only true reflection of psychological stress and the
prognostic aspect is not considered in the study. Hence, this research gap should be addressed in future studies with
due consideration of all the psychological parameters (social, clinical and biochemical) of studying the predictive
potential of AI in cancer patients. Perhaps a collaboration with psychiatric oncologists would be a pragmatic
approach to addressing this issue.

Microbiome diversity
A great deal of microbial diversity exists in human bodies. A unique microbial signature has been reported in
many solid tumors such as head and neck, colorectal and gastrointestinal malignancies. Due to protumorigenic
and antitumorigenic potential of the human microbiome, the microbiome can modulate the cancer cell’s biological
behavior [13]. Thus, microbial composition and interaction have an indirect impact on determining the prognosis
of the patient and can add complexity to AI-based cancer prognostication. In addition, we propose the need for
awareness of the new classes of antibacterial and antiviral drugs that may alter the microbiome.

COVID-19 & cancer prognosis
Due to the growing global incidence of cancer, millions of cancer patients seem to be more susceptible to COVID-
19 than the normal population. In this regard, numerous studies have been published regarding the prognosis of
cancer patients who tested positive for COVID-19 [14]. A systematic review by ElGohary et al. [15] showed that the
frequency of cancer among patients with confirmed COVID-19 was 2.1% (95% CI: 1.3–3.0) and mortality was
21.2% (95% CI: 14.7–27.6). Looking at these results, it is quite conceivable that pandemics such as COVID-19
have the potential to impact the prediction of cancer prognosis by AI, which can make the already established
algorithms meaningless.

Other additional confounders
Immunocompromised comorbidities such as diabetes, AIDS, organ transplant and autoimmune disorders are
some of the known validated prognosticators of increased recurrence and poor survival in cancer patients [16–18].
Various studies have shown significant differences in the survival of cancer patients with and without AIDS [17].
Although the survival gap between cancer patients with and without AIDS is reducing due to recent advancements
in management, a small survival difference still exists (≤ threefold) for cancers of the stomach, liver, anus, lung
and brain and the most aggressive lymphoma subtype [18]. Certain inborn errors of metabolism are also known to
result in predominantly immunologic phenotypes, manifesting in part as inborn errors of immunity [19,20]. These
phenotypes are mostly caused by defects that affect the quality or quantity of essential structural building blocks
(e.g., nucleic acids and amino acids), cellular energy economy (e.g., glucose metabolism), post-translational protein
modification (e.g., glycosylation) or mitochondrial function. Presenting as multisystemic defects, they also affect
innate or adaptive immunity, or both, and display various types of immune dysregulation [19,20]. These may add a
layer of biological complexity to AI-based cancer prognostication. In low resource settings, especially in developing
countries, such conditions are likely to go unnoticed in cancer patients. These confounding aspects need due
consideration in future research on AI-based cancer prognosis.
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Challenges & prospects
The growth and development of AI- and machine learning-based cancer prognostication will depend on the
quality and quantity of data inputs that resolve the complexities discussed above. Hence, first and foremost is
to make the large amount of data related to the aforementioned complexities in cancer available to AI scientists.
One of the sources of raw data is associated with the supplementary materials in publications, which should be
made available freely without any restrictions. AI scientists should be important stakeholders in the development
of various databases on human cancer (genomic, proteomic, etc.) and the integration of databases with cancer
research. Discoveries of cancer prognostic biomarkers by molecular biologists, pre-clinicians, and oncologists should
be shared with AI scientists in vivid and easily understood ways, so that AI scientists will integrate these aspects
into their programs catering to cancer prognosis.

Another major challenge for the AI scientist could be the validation of the data quality. The potential error during
cancer prognosis could be accountable to the limitations in the accessibility of validated data. The reproducibility
and robustness of the experimental results have become the parameter of quality in molecular research on cancer.
Already, efforts have been initiated to address these problems in cancer biology, and possibly with the evolution of
the same, AI would also be able to address this complexity [21].

There is a need for better infrastructure that can host both AI scientists and cancer biologists on one platform for
better communication and understanding. As a measure of capacity building, we recommend the introduction of
a basic course in AI for students and other stakeholders in the health science discipline. Similarly, AI students and
scientists should also explore basic courses in medical oncology to further bridge the gap for such interdisciplinary
research topics.

Conclusion
In conclusion, molecular signature, tumor microenvironment, patient’s psychological status and the microbiome
could influence the prognosis of the patient. Although these parameters are discussed briefly here, their complex-
ities are far deeper and probably beyond the comprehension of today’s AI scientists. For the development of an
effective and reliable algorithm for cancer prognostication, there is a pressing need to integrate the aforementioned
parameters into the system. The challenges of and remedies for the effective integration of such confounders have
been discussed. Effective collaboration and capacity building among AI scientists and cancer biologists would make
a difference in the future.
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Aim: Characterize use and efficacy/effectiveness of virtual, augmented, or mixed reality (VR/AR/MR)
technology as non-pharmacological therapy for chronic pain. Methods: Systematic search of 12 databases
to identify empirical studies, of individuals who experience chronic pain or illness involving chronic pain,
published between 1990 and 2021. JBI Critical Appraisal Checklists assessed study bias and a narrative
synthesis was provided. Results: 46 studies, investigating a total of 1456 participants and including 19
randomized controlled trials (RCT), were reviewed. VR/AR/MR was associated with improved pain-related
outcomes in 78% of the RCTs. Conclusion: While most studies showed effects immediately or up to one
month post treatment, RCTs are needed to further evaluate VR/AR/MR, establish long-term benefits, and
assess accessibility, especially among individuals who experience pain management disparities.

Plain language summary: Virtual, augmented and mixed reality (VR/AR/MR) are technologies that can be
used to manage chronic pain. The use and effectiveness of VR/AR/MR were examined during a review of
46 research studies, which included 1456 participants and 19 randomized controlled trials (RCTs). In 78%
of the RCTs, VR/AR/MR improved pain or pain-related outcomes. While most studies showed a benefit
on pain immediately or up to 1 month after treatment, more research is needed to assess the long-term
benefits of VR/AR/MR on pain and understand how these technologies provide pain relief in the body.
Additionally, the accessibility and cost–effectiveness of VR/AR/MR must be evaluated. These areas for
future research must consider individuals who experience disparities in the treatment of chronic pain.

Tweetable abstract: A systematic review of 46 studies, including 1456 participants and 19 RCTs, finds that
virtual/augmented/mixed reality can have short-term benefits for individuals experiencing chronic pain.
#VR/AR/MR #chronicpain

First draft submitted: 5 April 2022; Accepted for publication: 24 August 2022; Published online:
13 September 2022

Keywords: chronic conditions • chronic pain • disparities • pain management • technology • virtual reality

Chronic pain is a multidimensional health problem associated with reduced activity and productivity, disability,
decreased quality of life, worsening chronic disease, psychological effects such as depression and anxiety and
potential side effects and complications that may result from pain medications [1,2]. The International Association
for the Study of Pain defines chronic pain as pain lasting or recurring for over 3 months [3]. In USA, approximately
50 million adults are affected by chronic pain and approximately 20 million experience high-impact chronic pain
that often limits life or work activities [4]. The highest prevalence of chronic pain and high-impact chronic pain
has been reported among women, individuals who live in rural areas, and older adults who were previously but not
currently employed, experience financial instability and receive public health insurance [4]. Annually, chronic pain
contributes to approximately US$560 to $635 billion in economic costs because of direct medical expenses, lost
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productivity and disability programs [5,6]. A multi-modal, multidisciplinary approach, such as the biopsychosocial
care model, is required to manage chronic pain. This approach may include psychotherapy, complementary and
integrative medicine, physical rehabilitation, interventional treatment and pharmacology [7]. Virtual reality (VR),
augmented reality (AR) and mixed reality (MR) have emerged as promising, multi-modal, non-pharmacological
approaches to pain management that are available to clinicians and individuals living with chronic pain.

The term ‘virtual reality’ was introduced in the late 1980’s by computer scientist Jaron Lanier and it was
popularized in the 1990’s [8]. Virtual reality integrates computer graphics, body tracking and sensory input devices,
visual displays, sounds and other sensations to create an immersive virtual environment [9]. People can engage with
this computer-generated, simulated environment in several ways – such as by wearing a headset or head-mounted
display (HMD), wearing goggles, or watching images projected onto a screen – and the degree of immersion
varies with the type of equipment used to enter the environment. In the virtual environment, individuals can
access various software programs (known as applications), including virtual gaming, exercise-based therapies,
guided meditation and hypnosis. These applications can be operated via an increasing list of platforms, such as
smartphones, computers, Microsoft’s Xbox 360, Sony’s PlayStation R© VR and headsets, including Meta Quest’s
Oculus devices (such as the Oculus Quest) and HTC devices (such as the HTC VIVE) [10]. Augmented reality
involves the real-time overlay of digital content on what a person sees in the real, physical world [11]. For example,
a smartphone can be used on a city street to obtain information about buildings in one’s field of vision [12] or
individuals can play virtual games wherein they race toy cars on top of a table [13]. Augmented reality applications
can be operated via smartphones, computers and projectors and AR glasses or headsets such as the Google Glass
Enterprise Edition 2 and Oculus Quest 2. Mixed reality, a combination of VR and AR, allows individuals to see the
real, physical world while also seeing virtual objects [11]. Applications for MR can be operated on similar platforms
as VR and AR applications, and MR glasses such as the Microsoft HoloLens 2.

These technologies are hypothesized to work via various pathways to decrease chronic pain [14–16]. They promote
distraction from chronic pain by diverting attention away from noxious stimuli and toward more pleasant or
engaging stimuli [17]. They also provide a sense of control and can lead to possible cortical re-patterning, thereby
producing analgesia [17,18]. In addition, VR/AR/MR-based approaches may serve to address factors that can
exacerbate chronic pain by promoting behavioral skills for self-management and coping with pain. Because of
these benefits, coupled with the creation of an immersive and engaging virtual environment, VR/AR/MR may be
appealing, accessible, effective and scalable methods of implementing customized pain management for individuals
at home, particularly for long-term chronic pain management.

Although several studies have demonstrated positive effects of VR/AR/MR on pain and pain-related outcomes,
others have produced inconclusive evidence [19,20]. This systematic review was necessary because no comprehensive
appraisal of the evidence has been published to date, and there are gaps in the literature regarding the use and
efficacy/effectiveness of these technologies. A preliminary search of PROSPERO, MEDLINE, Cochrane Database
of Systematic Reviews and JBI Database of Systematic Reviews and Implementation Reports revealed published reviews
of VR effectiveness on musculoskeletal pain conditions, mental health and acute pain management. There are also
ongoing reviews focused on VR effects in the context of rehabilitation programs (e.g., stroke, phantom limb pain
and chronic pain), inpatient settings, cancer pain, burn injury and procedural pain. Yet, no current or in-progress
systematic reviews specific to chronic pain across the pediatric and adult lifespan were identified. In addition,
VR/AR/MR applications for pain have typically been used in clinic or hospital settings, but cost reductions and
advances in the technology have created the potential for use at home [21]. A systematic review of the available
VR/AR/MR studies for chronic pain will provide evidence for improving research and practice by informing the
future development of VR/AR/MR-based interventions for chronic pain.

The overarching objective of this review is to evaluate the use and efficacy/effectiveness of VR/AR/MR tech-
nology, versus usual care or control (where possible), for chronic pain and pain-related outcomes. The following
review questions were addressed among children, adolescents, and adults with chronic pain conditions:

• What are the types of VR/AR/MR applications or software that are used for pain management?
• What are the characteristics of VR/AR/MR applications or software that are used for pain management?
• How are VR/AR/MR applications or software used for pain management?
• What is the mechanism of action of VR/AR/MR interventions for reducing pain?
• Are VR/AR/MR interventions efficacious and cost-effective for pain management?
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Methods
We conducted this systematic review by following the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines [22] and the Joanna Briggs Institute (JBI) methodology for systematic reviews of
effectiveness evidence [23]. An a priori protocol was registered at PROSPERO 2019 (CRD42019117469).

Inclusion & exclusion criteria
This review considered experimental, quasi-experimental and non-experimental studies of children, adolescents,
and adults of all ages and genders who experience a chronic condition or illness involving chronic pain, persistent
pain, or recurrent pain that lasted for more than 3 months. Non-cancer chronic pain (primary) and chronic cancer
pain (secondary) were included. Because of the focus on chronic pain, this review did not include studies wherein
participants experienced acute, procedural, experimental, burn or postoperative pain. We considered studies that
compared the intervention to usual care or a control condition, and evaluated VR, AR and/or MR technology for
chronic pain and any pain-related outcomes. Pain-related outcomes include physical functionality, activities of daily
living and quality of life. Among the methods of outcome measurement were validated instruments, observation
and self-report.

Search strategy
A comprehensive literature search was undertaken to identify relevant, published studies. Search strategies were
developed and conducted by an experienced medical librarian with input from the research team in accordance with
the PRISMA guidelines [22] and were peer-reviewed by another medical librarian. Pre-identified sentinel articles
were hand searched for keywords relating to the study objectives. The searches combined controlled vocabulary
supplemented with keywords related to the concepts of chronic pain (e.g., intractable pain, persistent pain and
recurrent pain), pain management (e.g., decreased pain, increased physical functioning and improved quality of
life) and the intervention of VR (e.g., AR, virtual environment and immersive display). The search terms were
then translated for each additional literature database and grey literature resource appropriate for the study topic.
Searches were undertaken 3 October 2018, and rerun on 14 June 2021 and 23 November 2021. The searches were
limited to English language and year of publication between 1 January 1990 and 31 December 2021. Prior to
1990, VR was used as a computer and gaming interface and its utilization in healthcare became popularized during
the 1990’s [8]. Reference lists in selected articles were also screened for additional studies.

12 bibliographic databases were searched: EBSCO’s Business Source Complete, CINAHL, PsycInfo and Science
and Technology Collection, Cochrane Database of Systematic Reviews, Embase.com, IEEE Xplore, JBI EBP
Database, ProQuest Dissertations and Theses Global, MEDLINE via PubMed, Scopus.com and Web of Science
Core Collection. The five grey literature sources searched were National Technical Reports Library, Open Grey,
Papers First, Proceedings First, PROSPERO and REHABDATA. Clinical trials registries searched were Cochrane
Central Register of Controlled Trials and ClinicalTrials.gov. The full electronic search strategies for all sources are
provided in Supplementary Table 1. After the searches, all identified citations were collated and uploaded into
EndNote X9 (Clarivate Analytics, PA, USA) and duplicates were manually removed.

Assessment of methodological quality
First, the primary reviewer screened the articles selected for retrieval. Eligible studies were then critically appraised
independently by all clinical authors and non-author reviewers for methodological quality using JBI standardized
critical appraisal instruments for randomized controlled trials (RCTs), quasi-experimental studies, analytical cross-
sectional studies, case reports and case series [24]. The certainty of the evidence was subsequently assessed with the
Grading of Recommendations, Assessment, Development, and Evaluation approach [25]. Lastly, the primary reviewer
examined all the articles and critical appraisal instruments completed by the other reviewers. Any disagreements
among the independent reviews were resolved by the decision of the primary reviewer.

Selected studies were included in the review if they met the minimum criteria: seven out of 13 items on the JBI
Critical Appraisal Checklist for Randomized Controlled Trials, five out of nine items on the JBI Critical Appraisal
Checklist for Quasi-Experimental Studies (non-randomized experimental studies), five out of eight items on the
JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies, five out of eight items on the JBI Critical
Appraisal Checklist for Case Reports and six out of 10 items on the JBI Critical Appraisal Checklist for Case
Series [24]. Minimum criteria were checklist items identified as the most important methodological criteria based
on each study design. For example, minimum criteria for RCTs included randomization, similarity of treatment
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groups at baseline, similar treatment of groups except for the intervention of interest, intent-to-treat analysis,
reliable measurement of outcomes, appropriate statistical analysis and appropriate trial design.

Data extraction
Data were independently extracted from included studies by all clinical authors and non-author reviewers using a
researcher-developed tool that is provided in Supplementary Table 2. This tool, which expanded on the standardized
JBI Data Extraction Form [26], was used to collect data specifically related to the review’s purpose and objectives.
Extracted data included specific details about the study populations, methods, interventions and outcomes of
significance for the review objectives. To minimize errors after data extraction, the primary reviewer checked the
data and clarified any discrepancies by reviewing the respective articles.

Data synthesis
A statistical meta-analysis of the data was not possible due to the heterogeneity of the study populations, interventions
and comparators, outcome measurements and data analysis across the studies. Therefore, we utilized a vote-
counting approach based on the direction of the effect reported in each RCT. A sign test was conducted, and
a 95% confidence interval (CI) was computed for the RCTs included [27]. Statistical significance was p < 0.05.
Additionally, characteristics of all included studies have been presented and discussed in narrative form, including
tables (see Table 1) where appropriate.

Results
Study inclusion
A total of 1192 articles were identified through the searches. Duplicates (412) were excluded, leaving 780 articles
to be screened in the initial title and abstract screening phase. The results were exported to an EndNote library
and reviewed by the clinical authors. After excluding 707 articles based on the title and abstract because of unmet
inclusion criteria or review objectives, 73 articles were eligible for full-text review and critical appraisal. An additional
14 articles were excluded during the full-text review phase, leaving 59 articles that met all the eligibility criteria
for inclusion. After assessing the articles for methodological quality using the JBI standardized critical appraisal
instruments [24], 46 were retained for inclusion in this review. Figure 1 shows the PRISMA flow diagram [71].

Characteristics of included studies
The 46 studies that were reviewed include 19 RCTs [19,20,28–44], 21 quasi-experimental studies [45–65] one analytical
cross-sectional study [66] three case reports [67–69] and two pilot case series [14,70]. The total sample size for these
studies was 1456 and the number of participants in the individual studies ranged from one [68,69] to 179 [30].
Characteristics of the studies are summarized in Table 1.

Of the studies, 42 included virtual reality, two included augmented reality and two included mixed reality.
Among the 19 RCTs included in this review, the type of VR/AR/MR intervention, intervention duration and the
control condition varied widely, including interventions without VR/AR/MR and treatment as usual. For example,
four RCTs examined VR-based physical therapy approaches in comparison to in-person approaches [39–41,44], three
compared virtual behavioral therapies to in-person therapies (e.g., cognitive behavioral therapy [CBT] and mirror
therapy) [17,19,20,27,31,45] and one study compared the use of immersive VR gaming for distraction to self-mediated
distraction interventions [32]. The follow-up period varied across the studies and ranged from 6 hours to 6 months.
In 24 studies, there was no follow-up beyond the immediate post-intervention period.

All the studies, except one [60], involved adult participants who were ages 18 years and older. Chronic pain
conditions were not mutually exclusive and were listed as: chronic back pain (n = 10), neuropathic pain (n = 8),
chronic neck pain (n = 7), phantom limb pain (n = 6), complex regional pain syndrome (n = 5), fibromyalgia
(n = 4), chronic pain (n = 2), various chronic pain conditions including headaches (n = 2), chronic pain syndrome
(n = 1), rheumatoid arthritis and systemic lupus erythematosus (n = 1), chronic leg pain (n = 1), and upper body
chronic pain post cancer surgery (n = 1). In the study involving adolescents, participants were ages 10–17 and they
experienced chronic headache [60].

Of the participants in the included studies, 708 (48.6%) were females and 650 (44.6%) were males. It was
unclear what genders were involved in four studies [34,38,53,65] because participants were either reported as females
or males with no other gender categories specified. In another study, the gender for one participant was reported as
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Table 1. Characteristics of included studies.
Study (year),
country

Study design, study duration,
and post-intervention
follow-up

Sample size and
population

Interventions (I) and control condition or
comparator (C) included in the study

Outcomes reported Ref.

Randomized controlled trials

Austin
et al. Australia

Randomized, cross-over trial;
1 day; no follow-up

16 adults (≥18 years old)
with spinal cord injury and
chronic neuropathic pain

I: 3D, head-mounted delivery of virtual
environment
C: 2D screen application of virtual
environment

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[28]

Darnall
et al. USA

Pilot RCT investigating
feasibility and efficacy;
21 days; follow-up at 1 day
post intervention

74 adults (ages 25–74 years
old) with chronic back
pain and fibromyalgia

I: 21-day, skills-based, self-management
program based on principles of CBT,
biofeedback, and mindfulness delivered via
VR
C: Audio delivery of 21-day, skills-based,
self-management program

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: Yes
Efficacy: Yes
Cost–effectiveness: No

[29]

Garcia et al. USA Randomized,
placebo-controlled trial;
56 days; no follow-up

179 community-dwelling
adults (ages 18–81 years
old) with chronic low back
pain

I: 8-week, 3D, immersive, VR pain
self-management program that
incorporates principles of CBT, mindfulness,
and pain neuroscience education
C: 8-week, non-immersive delivery of 2D
nature footage and neutral music via Sham
VR headset

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[30]

Garcia-Palacios
et al. Spain

Pilot RCT investigating
feasibility, acceptability, and
preliminary efficacy; 3 weeks;
follow-up at 3 weeks post
intervention

61 adults (ages
23–70 years old) with
fibromyalgia syndrome

I: Group CBT program with VR as an
addition to activity pacing
C: Treatment as usual (follow-up sessions
with a rheumatologist for review of
medication treatment)

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[19]

Jeon et al. Korea Pilot pre-test and post-test
study; 1 day; no follow-up

10 adults (ages 28–50 years
old) with complex regional
pain syndrome type I

I: Body swapping training video presented
via VR, with mental rehearsal
C: Body swapping training video presented
via VR, without mental rehearsal

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[31]

Jin et al. Canada Randomized, controlled
crossover study; 1 day; no
follow-up

20 adults (ages 30–75 years
old) with chronic pain

I: Immersive VR game
C: Self-mediated control with typical pain
distraction activities used daily
(e.g., reading, meditating, and playing a
mobile game)

Pain: Yes
Pain-related outcomes: No
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[32]

Lewis
et al. United
Kingdom

RCT; 6 weeks; follow-up at
2 weeks post intervention

45 adults (ages 18–78 years
old) with complex regional
pain syndrome and body
perception disturbance

I: Visual illusions with digital manipulation
of participants’ hands using a mediated VR
device
C: Display of visual images, via a mediated
VR device, without digital manipulation of
participants’ hands

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[33]

Matheve
et al. Belgium

RCT; 1 day; no follow-up 48 adults (ages 18–65 years
old) with chronic,
nonspecific low back pain

I: Non-immersive VR games controlled by
performing pelvic tilt exercises
C: Performing pelvic tilt exercises, without
VR games, according to a beep tone

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[34]

Nambi
et al. Saudi
Arabi

RCT; 4 weeks; follow-up at
6 months post intervention

60 adult university
football players (ages
18–25 years old) with
chronic low back pain

I #1: VR training (physical therapy using VR)
with a VR game controlled by trunk
movements
I #2: Isokinetic training performed in an
isokinetic dynamometer
C: Conventional training of core muscles of
the trunk, with stretching

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[35]

Nambi
et al. Saudi
Arabi

RCT; 4 weeks; follow-up at
6 months post intervention

54 adult university soccer
players (ages 18–25 years
old) with chronic low back
pain

I #1: VR balance training, focused on core
stability muscles, with a VR game
controlled by trunk movements
I #2: Combined physical rehabilitation
using a Swiss ball for balance training of
core stability muscles
C: Conventional balance training (isotonic
and isometric exercises) for core muscles,
with stretching

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[36]

AR: Augmented reality; C: Control condition or comparator; CBT: Cognitive behavioral therapy; I: Interventions; RCT: Randomized controlled trials; SCSVR: Virtual reality.
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Table 1. Characteristics of included studies (cont.).
Study (year),
country

Study design, study duration,
and post-intervention
follow-up

Sample size and
population

Interventions (I) and control condition or
comparator (C) included in the study

Outcomes reported Ref.

Nambi
et al. Saudi
Arabia

RCT; 4 weeks; follow-up at
8 weeks post intervention and
6 months post intervention

45 adult university
football players (ages
18–45 years old) with
chronic low back pain

I #1: VR balance training, focused on core
stability muscles, with a VR game
controlled by trunk movements
I #2: Isokinetic training performed in an
isokinetic dynamometer
C: Conventional balance training (isotonic
and isometric exercises) for core muscles,
with stretching

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[37]

Nusser
et al. Germany

RCT; 3 weeks; no follow-up 55 adults (≥18 years old)
with non-traumatic
chronic neck pain

I #1: Standard rehabilitation program
(involving individual and group, general
and neck-specific exercise therapy) and
individual neck-specific sensorimotor
training using a VR device
I #2: Standard rehabilitation program and
general sensorimotor training (skill
exercises, balance exercises, and games)
C: Standard rehabilitation program

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[38]

Rezaei et al. Iran RCT; 4 weeks; follow-up at
5 weeks post intervention

42 adults (ages 22–46 years
old) with non-specific
chronic neck pain

I: VR video game, with increasing stages of
difficulty, controlled by participants’ head
movements
C: Conventional proprioceptive training
(exercises included eye-follow, gaze
stability, eye–head coordination and
position sense, and movement sense)

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[39]

Rothgangel
et al. The
Netherlands

RCT; 10 weeks; follow-up at
6-months post intervention

75 adults (ages 44–74 years
old) with a unilateral
lower limb amputation
who experience phantom
limb pain

I #1: Traditional mirror therapy followed by
tele-treatment at home with AR mirror
therapy
I #2: Traditional mirror therapy followed by
self-delivered mirror therapy
C: Sensorimotor exercises without mirror
therapy followed by self-delivered
sensorimotor exercises

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[20]

Sarig Bahat
et al. Australia

RCT; 4 weeks; follow-up at
3 months post intervention

90 adults (≥18 years old)
with chronic neck pain

I #1: VR kinematic training, with activity in
the virtual environment controlled by
participants’ head movements
I #2: Kinematic training using a
head-mounted laser beam and wall poster
C: Wait-list control

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[40]

Sarig Bahat
et al. Australia

Pilot RCT; 5 weeks; follow-up
at 3 months post intervention

32 adults (ages
26–55 years old) with
chronic neck pain

I: Kinematic and VR training, with activity
in the virtual environment controlled by
participants’ head movements
C: Kinematic training using a
head-mounted laser beam and wall poster

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[41]

Tejera
et al. Spain

RCT; 4 weeks; Follow-up at
1 month post intervention
and at 3 months post
intervention

44 adults (ages 18–65 years
old) with non-specific
chronic neck pain

I: VR treatment, with activity in the virtual
environment controlled by participants’
neck movements
C: Exercise treatment, with flexion,
extension, rotation, and tilt exercises

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[42]

Venuturupalli
et al. USA

Pilot, randomized, cross-over
study investigating feasibility;
1 day; no follow-up

17 adults (≥18 years old)
with physician-diagnosed
autoimmune disorders
and chronic pain

I: VR respiratory biofeedback environment
C: VR guided mediation environment

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[43]

Yilmaz Yelvar
et al. Turkey

RCT; 2 weeks; no follow-up 44 adults (ages
35–64 years old) with
subacute and chronic,
non-specific low back pain

I: Traditional physical therapy program
(involving hot pack, TENS, deep heat with
ultrasound, and therapeutic exercises) with
integration of a 15-minute VR walking
video
C: Traditional physical therapy program

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[44]

AR: Augmented reality; C: Control condition or comparator; CBT: Cognitive behavioral therapy; I: Interventions; RCT: Randomized controlled trials; SCSVR: Virtual reality.
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Table 1. Characteristics of included studies (cont.).
Study (year),
country

Study design, study duration,
and post-intervention
follow-up

Sample size and
population

Interventions (I) and control condition or
comparator (C) included in the study

Outcomes reported Ref.

Quasi-experimental studies

Alemanno
et al. Italy

Pre-test and post-test study;
4–6 weeks; no follow-up

20 adults (ages
19–72 years old) with
chronic low back pain

I: VR-based sensorimotor rehabilitation
using an avatar
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[45]

Botella
et al. Spain

Pre-test and post-test study;
7 weeks; follow-up at
6 months post intervention

6 adults (47–65 years old)
with fibromyalgia

I: Group CBT program with VR-based
relaxation and mindfulness
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[46]

Fowler
et al. USA

Implementation-
effectiveness, pre-test and
post-test study; 3 weeks; no
follow-up

16 adult veterans (ages
28–63 years old) with
chronic pain

I: VR distraction and exposure therapy, with
increasing intensity of stimulation and
movement
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[47]

Glavare
et al. Sweden

Pre-test and post-test study;
6 weeks; no follow-up

12 adults (ages
18–65 years old)
with chronic neck pain

I: Neck range of motion exercises using VR,
with increasing levels of difficulty
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[48]

Hennessy
et al. USA

Pilot study investigating
content, usability, safety, and
acceptance; 1 week;
follow-up at 3–5 days
post-intervention

12 adults (ages
43–60 years old) with
chronic low back pain

I: VR walking modules with progressive
movement exposure
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[49]

House et al. USA Feasibility study; 8 weeks;
follow-up at 8 weeks post
intervention

6 adults (ages 22–78 years
old), with upper body
chronic pain post breast
cancer surgery

I: Integrative VR rehabilitation games, with
increasing stages of difficulty
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[50]

Igna
et al. Romania

Pre-test and post-test study;
3 weeks; no follow-up

68 adults (ages
24–74 years old) with
chronic back pain

I #1: Physiotherapy, medication, and
mindfulness-based CBT
I #2: Physiotherapy, medication, and
VR-enhanced CBT
C: Usual pharmacological and
physiotherapy treatment

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[51]

Jones et al. USA Pre-test and post-test study;
1 day; no follow-up

30 adults (ages 35–79 years
old) with various chronic
pain conditions

I: Immersive, 360-degree, VR fantasy
landscape
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[52]

Liu et al. USA Preliminary study
investigating efficacy; 1 day;
no follow-up

31 adults (ages
20–81 years old) with
migraines, headaches, or
other forms of chronic
pain (not specified)

I: VR-guided meditation
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[53]

Matamala-
Gomez
et al. Spain

Pre-test and post-test study;
1 day; no follow-up

19 adults (ages
40–55 years old) with
complex regional pain
syndrome type 1 or type 2

I: Observation of virtual arm, with varying
levels of transparency and size
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[54]

Mouraux
et al. Belgium

Preliminary, pre-test and
post-test study; 1 week;
follow-up at 24 hours post
intervention

22 adults (ages
18–75 years old) with
chronic neuropathic pain

I: 3D, AR, mirror visual feedback therapy,
with training exercises and virtual games of
increasing levels of difficulty
C: None

Pain: Yes
Pain-related outcomes: No
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[55]

Ortiz-Catalan
et al. Sweden
and Slovenia

Pre-test and post-test study;
6 weeks; follow-up at
1 month post intervention,
3 months post intervention,
and 6 months post
intervention

14 adults (ages
26–74 years old) with
chronic, intractable
phantom limb pain

I: Phantom motor execution using
myoelectric pattern recognition, AR, and
VR, with virtual games controlled by
phantom movements
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[56]

AR: Augmented reality; C: Control condition or comparator; CBT: Cognitive behavioral therapy; I: Interventions; RCT: Randomized controlled trials; SCSVR: Virtual reality.
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Table 1. Characteristics of included studies (cont.).
Study (year),
country

Study design, study duration,
and post-intervention
follow-up

Sample size and
population

Interventions (I) and control condition or
comparator (C) included in the study

Outcomes reported Ref.

Putrino
et al. USA

Pilot study; duration was not
reported; no follow-up

8 adults (ages 44–71 years
old) with neuropathic pain

I: Exposure to a scenic VR environment and
a somatic VR environment (involving upper
and lower extremity movements)
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[57]

Roosink
et al. Canada

Proof-of-principle and
feasibility study; 2 weeks; no
follow-up

9 adults (ages 25–72 years
old)
with spinal cord injury and
neuropathic pain

I: Interactive VR walking using an avatar,
with virtual feedback
C: Static presentation of a virtual scene

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[58]

Rutledge
et al. USA

Feasibility study; duration was
not reported; no follow-up

14 adult veterans (ages
37–76 years old) with an
upper or lower extremity
amputation, who
experience phantom limb
pain

I: Bicycling through a VR environment, as
an avatar, using a bicycle pedaler and a
customized pedal for prosthesis
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[59]

Shiri et al. Israel Pre-test and post-test study;
duration was not reported;
follow-up at 1 month post
intervention and 3 months
post intervention

10 adolescents (ages
10–17 years old) with
chronic headache

I: VR relaxation combined with biofeedback
(tracking of galvanic skin response)
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[60]

Solcà
et al. Switzer-
land

Pre-test and post-test,
crossover study; 1 day; no
follow-up

48 adults (ages 23–80 years
old) with complex
regional pain syndrome

I: Mirror therapy using synchronous
heartbeat-enhanced VR (virtual hand
flashing in synchrony with heartbeat)
C: Mirror therapy using asynchronous
heartbeat-enhanced VR

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[61]

Trost et al. USA Pilot study investigating
feasibility and preliminary
efficacy; 2 weeks; follow-up at
7 days post intervention and
at 2 weeks post intervention

27 adults (ages
23–70 years old) with
complete paraplegia after
spinal cord injury and
neuropathic pain

I: Immersive, spatially tracked, VR walking
(using an avatar), with virtual games
C: View of avatar in 360-degree virtual
scene with no control over virtual walking

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[62]

Villiger
et al. Switzer-
land

Pre-test and post-test study;
4 weeks; follow-up at
12–16 weeks post
intervention

14 adults (ages 28–71 years
old) with neuropathic pain
from chronic, incomplete
spinal cord injury

I: VR-augmented neurorehabilitation, with
VR tasks (of increasing stages of difficulty)
for muscle training
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[63]

Won et al. USA Pilot study investigating
usability, acceptance, ease of
use, and engagement;
duration was not reported;
follow-up at 1 month post
intervention

9 adults (ages 19–60 years
old) with complex
regional pain syndrome

I: VR mirror visual feedback module, with
avatar hands
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[64]

Zauderer
et al. France

Pilot and feasibility study;
3 months; no follow-up

18 adults (≥18 years old)
with non-specific chronic
neck pain

I: Standardized, immersive, VR exercise
therapy (including active cervical spine
range of motion and eye-neck coordination
exercises) and non-immersive VR exercise
therapy (aerobic, mobility, and muscle
strengthening exercises, and a
personalized, home-based exercise
program)
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[65]

Analytical cross-sectional study

Solcà et al. USA Cross-sectional, prospective,
intervention study; 2 days; no
follow-up

15 adults (ages 33–61 years
old) with chronic leg pain

I #1: Personalized, visual, VR feedback of
perceived SCS-induced paresthesia
displayed on patient’s virtual body
I #2: Personalized, visual, VR feedback with
rotation of the virtual body and spatial
misalignment between visual VR feedback
and SCS-induced paresthesia
C: VR illumination of body with no
SCS-induced paresthesia

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[66]

AR: Augmented reality; C: Control condition or comparator; CBT: Cognitive behavioral therapy; I: Interventions; RCT: Randomized controlled trials; SCSVR: Virtual reality.
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Table 1. Characteristics of included studies (cont.).
Study (year),
country

Study design, study duration,
and post-intervention
follow-up

Sample size and
population

Interventions (I) and control condition or
comparator (C) included in the study

Outcomes reported Ref.

Case reports

Ambron
et al. USA

Pre-test and post-test study;
6 weeks; no follow-up

2 adults (specific ages
were not provided) with
unilateral transtibial
amputation who
experience phantom limb
pain

I: VR games, of increasing levels of
difficulty, using robot avatar legs controlled
by participants’ lower limb movements
C: None

Pain: Yes
Pain-related outcomes: No
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[67]

Oneal et al. USA Pre-test and post-test study;
6 months; follow-up at
1 month post intervention

1 adult (age 36 years old)
with chronic neuropathic
pain from spinal cord
injury

I: VR hypnosis and self-hypnosis at home
between VR sessions
C: Previous trial of standard hypnosis
conducted with participant

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[68]

Ortiz-Catalan
et al. Sweden

Pre-test and post-test study;
18 weeks; no follow-up

1 adult (age 72 years old)
with an amputated limb
who experiences phantom
limb pain

I: AR, with the use of a virtual limb to play
a game controlled by phantom motions
C: None

Pain: Yes
Pain-related outcomes: No
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[69]

Case series

Garrett
et al. Canada

Exploratory, mixed-methods,
pre-test and post-test study;
4 weeks; follow-up at 6 hours
post intervention and
24 hours post intervention

8 adults (ages 31–71 years
old) with chronic pain

I: VR-based mindfulness and meditation,
exposure to a VR fantasy landscape and a
scenic VR environment, and virtual
problem-solving games
C: None

Pain: Yes
Pain-related outcomes: Yes
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[14]

Sato et al. Japan Pre-test and post-test study;
duration was not reported;
no follow-up

5 adults (ages 46–74 years
old), with complex
regional pain syndrome

I: Non-immersive, VR mirror visual feedback
therapy, using an avatar hand, with hand
exercises
C: None

Pain: Yes
Pain-related outcomes: No
Mechanism of action: No
Efficacy: Yes
Cost–effectiveness: No

[70]

AR: Augmented reality; C: Control condition or comparator; CBT: Cognitive behavioral therapy; I: Interventions; RCT: Randomized controlled trials; SCSVR: Virtual reality.
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Figure 1. PRISMA flow diagram of study selection process.
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‘Other’ [30]. Four studies had 100% females and six studies had 100% males. In two articles, data was not reported
regarding gender [57,68].

Most of the articles (n = 32) did not provide data on race, ethnicity, or other sociodemographic factors (e.g., ed-
ucation, employment, and income). In eight studies, most of the participants were White [19,29,30,43,47,50,52,64]

and in two studies, most of the participants were Black [49,62]. In one article, five participants were described as
non-White and no data on race were reported for the remaining participants [59]. In another article, 96% of the
participants were reported as White and no data were reported regarding the other participants’ race [52].

Outcomes of interest and data collection instruments varied across the studies. All the studies included the
reduction of pain and/or improvement of pain-related outcomes as study outcomes. Of the studies, 46 investigated
the reduction of pain, 41 investigated the improvement of pain-related outcomes and 24 studies also evaluated
the feasibility and/or acceptability of the technologies. Across the studies, pain-related outcomes included fear of
movement, range of motion and kinematics, pain-related functional limitations or interference, emotional distress
(such as depression), health status, daily functioning, functional disability, coping skills and quality of life. Outcomes
related to feasibility and/or acceptability included acceptability of and satisfaction with VR, adverse effects or side
effects and preferences in the type of VR experience.

Methodological quality
The overall quality of the RCTs was moderate, with a low risk of bias for most of the studies. Low risk of bias
(or bias not serious) was related to having few study limitations such as the lack of blinding, a control group or
follow-up. There was one RCT with a moderate risk of bias that was related to a lack of blinding of participants
to treatment assignment, lack of blinding of those delivering treatment and lack of follow-up [44]. However, the
authors reported that the participants and therapists were not blinded because of the nature of the intervention [44].
It was unclear whether at least one criterion was met in five RCTs because the information was not reported. These
criteria included concealment of allocation to treatment groups, blinding of participants to treatment assignment,
blinding of treatment assignment among those delivering treatment and blinding of outcome assessors to treatment
assignment [29,31,32,39,43]. In two of these RCTs, it was unclear whether true randomization was used because the
process of random assignment was not described [31,32]. Results of the critical appraisal assessments are provided in
Supplementary Tables 3–7.

Results of the included studies consisted of both positive and negative findings; thus, publication bias was
undetected. However, given the limitations of the included studies that were described above, the certainty of the
evidence ranged from low to high with most of the studies demonstrating low certainty. This classification indicates
that further research is highly likely to influence the confidence in the estimate of effect and is likely to change the
estimate [25].

Review findings
The characteristics of the included studies are presented in Table 1 and a summary that addresses the sub-questions
of this review are provided below.

Types of VR/AR/MR applications or software used for chronic pain management

The types of technology varied across the studies. Of the VR studies, 13 utilized immersive HMDs or headsets [28–

31,42,43,47,48,53,57,59,61,65], 13 utilized immersive HMDs or headsets that were either tethered to computers and
external cameras or required a computer to operate the software [14,32,38,40,41,49,52,54,59,62,64,66,67] and 14 utilized
a desktop or laptop and displayed the non-immersive virtual environment on a desktop or laptop monitor,
projector screen, or other screen [19,33–37,39,45,46,50,58,60,63,70]. One study utilized a device that was described as
a VR helmet [68]; however, it was unclear whether the device was tethered or not. One study utilized a tethered,
immersive HMD then transitioned to a portable VR headset and smartphone, when they became available, for
participants’ use at home if desired [59]. In one study, participants used video glasses to watch a virtual video on an
iPod [44]. In another study, the VR device was not described [51].

Two studies used a non-immersive AR or MR system, consisting of a desktop computer and camera and presented
the environment on a computer screen [55,56]. In one study, a VR and myoelectrically-controlled AR environment
was presented on a computer screen [69]. Another study utilized a tablet with a built-in camera to display the AR
environment [20].
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Characteristics of VR/AR/MR applications or software used for chronic pain management

Several devices and systems were used in the studies. The most utilized hardware to deliver VR across studies was the
HMD, predominantly the Oculus Rift R© (n = 12). Other HMDs included the HTC VIVE and Samsung Oculus
Gear VR, among others. These devices have built-in stereoscopic screens, which display separate images for each
eye and sound and motion tracking sensors [72]. Other hardware used in the studies, such as the Wrap™1200VR
and the Wrap920, are digital video eyewear products typically designed for AR applications [73]. Head-mounted
displays and eyewear devices provide immersive video experiences for users. Systems included the Virtual Reality
Rehabilitation System and the BrightArm Duo Rehabilitation System – an experimental robotic platform that
modulates gravity loading on the upper extremities [50]. These types of systems are like the Microsoft Kinect and
Nintendo Wii because they integrate haptics and projected images or avatars on screens so that users’ motions are
mimicked.

Various VR/AR/MR environments were used across the studies. In the context of this review, VR environment is
a broad term that refers to a digital setting capable of arousing feelings of presence and immersion in VR/AR/MR
users. Environments included VR or AR games, rehabilitation games or training exercises, VR programs or
applications (such as a guided meditation application), VR experiences with and without gaming elements, software
(such as a reality substitution software) and environments (such as a simulator for chronic pain treatment). While
often designed for pleasure, VR games can also have therapeutic applications, such as distraction to mitigate painful
experiences [74]. When VR/AR applications are used with sensors and haptics in rehabilitative settings to improve
users’ physical or cognitive functioning, they may be referred to as rehabilitation games, rehabilitation training, or
exergaming [75]. As seen in the studies included in this review, the level of immersion in the VR environment can
range from the projection of images on desktops or across screens in entire rooms to the use of avatars via HMDs.

Approaches for using VR/AR/MR applications or software for chronic pain management

The included studies applied a variety of approaches to using VR/AR/MR technology for chronic pain management.
The approaches were not mutually exclusive and included: coping with chronic pain and/or associated psychosocial
correlates (n = 14); rehabilitation therapy (physical or neuro rehabilitation) (n = 10); mirror therapy (n = 7);
adjunct/enhancement to CBT (n = 4) or to replace guided imagery (n = 1) in the psychological treatment of pain;
gaming (n = 3); virtual feedback or biofeedback (n = 3); prediction of motion intent (n = 2); visual feedback therapy
or visual representation of spinal cord stimulation-induced paresthesia to enhance analgesia (n = 2); meditation and
relaxation to reduce chronic pain and/or stress (n = 2); adjunct to activity management (n = 1) or an adjunct home
therapy in chronic pain management (n = 1); graded exposure therapy for kinesiophobia (n = 2) and hypnosis
(n = 1). Of the studies, 84.8% (n = 39) were conducted within a healthcare or research setting, such as a clinic
or laboratory, while 15.2% (n = 7) were home-based. A group format was used to deliver the intervention in two
studies [19,46].

Types of experiences that were provided by the VR/AR/MR applications or software were active (n = 25),
passive (n = 14), or both (n = 7). Active experiences enabled participants to engage with interactive elements in the
VR/AR/MR environment by completing specific tasks, such as shooting snowballs at targets. In contrast, passive
or relaxing experiences allowed for immersion in the VR/AR/MR environment without active interaction, such
as ‘traveling’ through the environment on a boat ride. The frequency or timing of VR/AR/MR delivery was two
or more times in approximately 93.5% (n = 43) of the studies, with exposure to the VR/AR/MR environments,
or dose, during each period of use ranging from one minute [33] to 2 hours [46]. The 2-hour experience was a
group session in which a computer display, not an HMD, was used. In one study, participants were free to use the
AR tele-treatment at home for their desired length and frequency [20]. However, participants used a tablet, not an
HMD, to complete the tele-treatment. In another study, there was no set time limit for use of the technology, but
the virtual environment was presented on a desktop monitor instead of an HMD [70]. Although the study duration
was reported in three of the articles, the specific duration of VR/AR/MR use was not reported [42,56,58]. In five
articles, the study duration was not reported (see Table 1). In another article, neither the study duration nor the
specific duration of VR use was reported [64].

Mechanism of action of VR/AR/MR interventions for reducing chronic pain

Of the included studies, only one directly investigated the mechanism of action of VR/AR/MR for reducing chronic
pain. In this study, the proposed mechanisms were mastery of behavioral skills for pain coping and enhanced self-
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efficacy for pain self-management and treatment effects were attributed to the didactic and skills-based components
of the immersive behavioral therapy [29]. In the remaining 45 articles, mechanisms of VR/AR/MR action were
presented as the basis for the study or were discussed in support of study findings. These mechanisms were
not mutually exclusive and included: cognitive and or/attentional distraction (n = 26); mechanisms of mirror
therapy such as activation of the mirror neuron system, promotion of cortical reorganization, and provision of
normalized visual feedback of movements to reduce pain perception (n = 7); activation of motor control mechanisms,
function and movement execution, and/or coordination (n = 4); reversal of maladaptive changes in central
neuroplasticity (n = 4); interactivity for motivation and enjoyment or training (n = 4); pain modulation mechanisms
(n = 3); relaxation (n = 3); immersion (n = 2); cognitive-emotional mechanisms or emotional engagement (n = 2);
modulation of the central body representation (n = 2); sensory feedback and activation of neurons to enhance
motor activity (n = 2); promotion of self-efficacy for pain coping behaviors (n = 1); endorphin release (n = 1);
alterations in the inflammatory process (n = 1); psychoneuromuscular theory (n = 1), activation of cortical and
subcortical neuronal circuits to stimulate learning and recovery (n = 1) and visuotactile or visuomotor stimulations
(n = 1).

Efficacy/effectiveness & cost-effectiveness of using VR/AR/MR interventions for chronic pain management

All 46 included studies investigated the efficacy/effectiveness of using VR/AR/MR for addressing pain and/or
pain related outcomes as primary and/or secondary study objectives. However, the cost–effectiveness of using these
technologies was not investigated. The efficacy/effectiveness findings provided here are not mutually exclusive.

There was a statistically significant reduction in pain intensity, phantom sensations, or pain unpleasantness in
29 (63%) of the 46 included studies. 19 of these 29 studies were RCTs, of which 78% (n = 15) demonstrated
statistically significant benefits associated with the use of VR/AR/MR technology for pain (95% CI: 54%, 94%;
p = 0.019) relative to the control group. Of these 15 RCTs, only one study utilized a sham VR headset as the control
condition [30]. The remaining 14 RCTs utilized active control conditions without VR/AR/MR as the comparison,
including an audio version of the content from the VR intervention program, mirror therapy, physical therapy, a
rehabilitation program, and typical pain distraction activities. One of these studies also included a wait-list control
as a second comparator [40]. In 82.7% (n = 24) of the 29 studies, effects on pain were found in the short-term
(up to four weeks post-treatment) or immediate post-treatment period. Two studies found both short-term and
long-term effects, with long-term effects at five weeks post intervention (n = 1) and 12–16 weeks post treatment
(n = 1). Long-term effects were found in three studies, at 8 weeks post intervention (n = 1) and 6 months post
intervention (n = 2). Although findings were not statistically significant in the remaining included studies (n = 17),
some studies had clinically significant findings. For example, in one study, eight of 12 participants experienced an
improvement in pain scores, with an average decrease of 7.8 points (SD = 5.1) [49]. In another study, VR conditions
resulted in a 50% decrease in pain ratings [54].

In 52.2% (n = 24) of the included studies, there was a statistically significant improvement in various pain-related
outcomes. These outcomes included: psychological correlates of pain such as affect, depression, anxiety, mood, or
stress (n = 12); functional status, daily functioning, or mobility (n = 9); pain interference in activities of daily living
and/or sleep (n = 6), kinesiophobia (fear of pain due to movement; n = 5), quality of life (n = 3), disability (n = 3),
limb/joint range or strength (n = 2), cognitive functions (n = 2), coping skills (n = 1) and time spent thinking
of pain (n = 1). In 75% (n = 18) of the 24 studies, effects on pain-related outcomes were found immediately
post-treatment. Long-term effects were found in six of the studies, at 5 weeks post intervention (n = 1), 3 months
post treatment (n = 1), 8 weeks and 6 months post intervention (n = 1) and 6 months post intervention (n = 3).

Other outcomes of interest

24 studies evaluated the feasibility and/or acceptability of using VR for pain and/or pain-related outcomes. In
half of these studies, most participants reported satisfaction or high satisfaction with the VR experience or found
VR to be an acceptable intervention for chronic pain. Participants described the experience as logical, useful,
helpful and/or immersive [19,58,59]. They also reported high levels of enjoyment, motivation, attention [63] and
engagement during the VR intervention [52]. In one study, two of 10 participants did not perceive the VR treatment
as helpful [60]. However, there was an improvement in their pre-post treatment quality of life scores. In a few studies,
some participants provided comments regarding limitations of the VR technology and practicality of its use as an
adjunctive therapy. These participants reported frustration with using complex or cumbersome control systems,
inability to use VR equipment during periods of severe pain and short-term duration of treatment effects [14];
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an unpleasant weight of the study device – a helmet with an integrated HMD and sensors for head-movement
tracking [38]; heaviness or bulkiness of the VR glasses or headset [43,48,65]; and discomfort in using corrective glasses
with the headset [65].

Adverse effects or negative side effects were reported in 33.3% (n = 8) of these 24 studies. These effects included:
nausea or motion sickness (4%, n = 4 to 24%, n = 6) [29,30,47]; mild nausea, rated at a level of 3 out of 10 (62.5%,
n = 5 and 3.3%, n = 1) [14,52]; discomfort of device (5.9%, n = 1) [43]; dizziness in two of 98 study sessions [47];
transient musculoskeletal pain, physical fatigue and difficulties in maintaining attention (77.8%, n = 7) [58]; and
‘slight’ cybersickness (22.2%, n = 2) [64]. In one study, the presence or absence of adverse effects or negative side
effects was not reported [47]. Some of these effects resolved with slowing the experience or taking a break from the
device. Despite experiencing these effects, many participants either remained in the study because their ability to
participate was not affected, expressed interest in using VR at home, and/or purchased a VR device to use at home.

Discussion
Effective pain management requires multifaceted interventions that employ pharmacological and non-
pharmacological strategies. However, chronic pain management has posited a significant challenge for healthcare
providers because a multidisciplinary treatment approach is lacking [19]. This systematic review of 46 studies suggests
that VR/AR/MR can aid in providing patients with relief from chronic pain and improving pain-related outcomes.

Although several types of VR/AR/MR applications or software were utilized in several ways according to
numerous mechanisms of action across the included studies, VR/AR/MR demonstrated statistically significant or
potential clinical benefits for chronic pain and chronic pain-related outcomes. In the majority of the RCTs, the
statistically significant benefits were demonstrated in comparison to active control conditions. The limited use of
sham interventions and wait-listed control conditions inhibits our understanding of whether these findings, which
were primarily short-term effects, are therapy-specific effects. For included studies in which the primary outcome
measure was pain reduction, most of the studies reported high levels of pain reduction among study participants and
benefits such as reduction of pain intensity, phantom sensations and pain unpleasantness. In studies that measured
pain-related outcomes, the use of VR/AR/MR technology was also associated with substantial improvements.
Benefits were demonstrated for outcomes such as pain interference, health status, fear of movement, functional
capacity, perceived quality of life and coping strategies. In addition, some of the studies demonstrated the feasibility
of VR/AR/MR use and high levels of acceptability among users and healthcare providers.

The VR/AR/MR interventions utilized among included studies were diverse, with VR being the most common
technological approach employed. Few studies (n = 7) were home-based and only three of these studies included the
option for use of a wireless device [20,30,59]. Additionally, participants in a few studies (n = 6) raised concerns regarding
the convenience of the technology. These findings may help to improve the design, uptake and effectiveness of
VR/AR/MR interventions; thus, they have important implications for long-term use of these technologies. There
remain many barriers for patients seeking to access care at pain clinics or via integrative pain management clinicians,
including costs and prohibitive distances to travel [76,77]. In addition, the coronavirus disease 2019 pandemic has
further hastened the urgency to deliver effective nonpharmacological pain management interventions remotely to
patients in the safety and comfort of their homes. The advancements in VR/AR/MR technology in recent years
create the potential for increased accessibility and use of the technology in the patient’s home environment as a part
of their daily activities. Accordingly, utilizing VR/AR/MR modalities to manage chronic pain at home may be of
interest to patients unable to travel or access in-person care [78]. Moreover, use of home-based interventions creates
the opportunity for long-term evaluation of chronic pain and identification of patterns over time.

In studies that evaluated the acceptability and/or feasibility of VR/AR/MR, participants reported high satisfac-
tion levels with the technology along with minimal, if any, adverse effects, or negative side effects. User satisfaction
was specifically high in areas such as immersion, realism, helpfulness and usefulness of VR/AR/MR [19,58–60].
This underlines the fact that researchers must consider the nature of the virtual environments they design for
VR/AR/MR interventions because the development of sophisticated VR technology may potentially be for naught
if it does not appeal to the user [79]. The review finding reinforces the need for researchers to evaluate the level of
immersion of their virtual environments and conduct analyses of how factors, such as immersion, affect pain and
treatment outcomes [79].

Although this review focused on chronic pain management, our findings are consistent with current literature
that has assessed the use of VR for various types of pain, including acute pain and found significant improvement in
pain levels [79–81]. Most of the included studies did not directly address the mechanism of action for VR/AR/MR,
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but over half of the studies cited the benefits of distraction in pain management and alluded to the benefits of
pain reduction because of distraction. Changing the way that the brain physically registers pain through a complex
combination of immersion, emotional engagement and cognitive distraction that is imbedded into the current
experience draws attention away from the amount of pain being consciously experienced [32,74]. Stimulating the
visual cortex while simultaneously engaging other senses, through features that allow users’ minds to engage in
an immersive experience, may have a substantial effect on moderating the processing of nociceptive stimuli and
improving pain outcomes [17]. We infer that this process may be key in addressing and relieving chronic pain.
Future research should characterize treatment mechanisms and duration of treatment effects across diverse patient
populations living with chronic pain conditions. Addressing this gap will require investigations that capture both
patient-reported outcomes and objective metrics, such as brain imaging, blood-based biomarkers and quantitative
sensory testing.

Some of the included studies incorporated VR/AR/MR into evidence-based clinical interventions, such as
hypnosis, biofeedback and physical therapy, resulting in significant improvements in pain and functional capac-
ity [38,60,68]. Aligning VR/AR/MR with other modalities has become an emerging line of research, with some
evidence that coupling of VR/AR/MR with methods such as hypnosis may be more effective for chronic pain
management than either intervention alone [17]. One advantage of VR/AR/MR-based pain management interven-
tions is the unique opportunity for managing chronic pain while also reducing biopsychosocial distress, anxiety and
depression among patients [17,18,50,51,53]. Because pain-related outcomes can be triggered by psychosocial factors
such as stress, the reduction of biopsychosocial stress may also include a potential effect of pain reduction [82].

We also aimed to assess the cost–effectiveness of VR/AR/MR interventions, but the included studies did
not investigate cost-related outcomes. Interventions that involve VR/AR/MR could potentially be an affordable
alternative for patients suffering from uncontrolled pain, especially as the cost of such technology, particularly VR,
continues to decrease [21,81]. As the VR/AR/MR market continues to evolve, future studies are needed to assess the
cost–effectiveness of such interventions for hospital, in-clinic and home use in addition to assessing feasibility of
access to such interventions [81]. The combination of decreased technology costs, flexibility and customizability of
immersive features and improvements in software and hardware design result in numerous potential applications
for patients who are suffering from a wide array of acute and chronic pain conditions ranging from visceral to
somatic pain [17]. These factors increase the potential and necessity for widespread dissemination of technology-
based interventions throughout health systems [17,43], with the capability to continue treatment post-discharge.
Therefore, VR/AR/MR technologies may be used to support individual and customized pain self-management,
which can contribute to a decrease in healthcare expenses and expenditure of clinical resources.

Notably, most studies did not report data regarding race, ethnicity, or other sociodemographic factors. This may
have been because most studies were conducted outside of the USA. While race is a socially constructed concept,
it is paramount that future researchers assess and analyze socioeconomic and sociocultural contexts as well as the
availability of resources and quality of infrastructure for persons with chronic pain. Addressing social determinants
of health (SDOH) is at the forefront of achieving health equity. However, there was a paucity of attention to
SDOH in the included studies, with demographics often limited to male/female gender, age, disease state, type
of chronic pain and level of education. Attention to social-environmental-cultural context in future studies is
particularly important given documented biases in healthcare. Such attention is also required when testing and
refining intervention strategies for populations that have been historically marginalized because of race, ethnicity,
or geographic location. Because pain is influenced by biological, psychological and social factors [83] and quality
of life is a multidimensional concept often considered in investigations of pain, not examining social factors may
contribute to further marginalization. Moreover, the acceptability and utility, access, mechanism of action, potential
efficacy and customizability of VR/AR/MR technologies to individual needs may be affected by these factors [84].

Limitations of this review
There are some limitations to this systematic review. The specific inclusion criteria for this review may have limited
the number of available studies. Despite conducting a comprehensive literature search, the final number of included
studies may have been limited because the use of VR/AR/MR technology for chronic pain is still a developing
area of research with few published studies. As a result, the number of RCTs and studies involving children and
adolescents was also limited. Furthermore, this review only included studies published in the English language,
potentially excluding studies otherwise eligible.
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The heterogeneity of the study populations, interventions and comparators, outcome measurements and data
analysis across the studies posed a challenge for synthesizing the results. Most of the studies included small sample
sizes and in 45.6% (n = 21) of the studies, a comparison condition or comparator was not included. Because
of these factors, the generalizability of the study results and the power of the findings are limited. Despite the
heterogeneity in RCT outcomes, a count synthesis was conducted. However, a limitation of this approach is the
inability to capture the magnitude of effect sizes. In addition, half of the studies did not include pain relief follow-up
beyond the immediate post-intervention period. In a few of the studies that included a follow-up (n = 9), follow-up
occurred within 1 month of treatment, resulting in insufficient data for determining VR’s efficacy/effectiveness for
long-term pain relief. Thus, there is a need for RCTs with larger sample sizes that are designed to provide high-
quality evidence on the long-term efficacy of VR/AR/MR interventions. The RCTs included in this review tested
a diverse set of VR/AR/MR interventions, of varying immersion and duration, with differing control groups, and
were conducted on patients with a spectrum of chronic pain conditions, thus inhibiting our ability to inferentially
ascertain the impact of these therapies. Nonetheless, there were significant findings that can be used to inform the
future development of VR/AR/MR-based interventions for chronic pain. As the body of VR/AR/MR research
grows, future systematic reviews may benefit from examining RCTs focused on comparing improvements in physical
health functioning (e.g., physical therapy) and behavioral health functioning (e.g., CBT and mirror therapy) among
patients with chronic pain conditions. Future studies examining the impact of VR/AR/MR compared with other
pain management approaches would benefit from improved data reporting and interpretation as outlined by pain-
focused international research groups, specifically when reporting group differences on patient-reported outcomes
and pain medication utilization [85,86].

Conclusion
This review supports findings of current literature regarding the efficacy/effectiveness of VR/AR/MR in reducing
pain and improving pain-related outcomes among patients living with chronic pain. The potential that innovative,
non-pharmacological technologies, such as VR/AR/MR, offer individuals to cope with chronic pain is significant.
While the efficacy/effectiveness of VR/AR/MR technology varied across studies, most studies showed short-term
effects on reducing pain and improving pain-related outcomes. These pain-related outcomes included coping skills,
daily functioning or functional capacity and perceived quality of life. Based on the findings of this review, there is no
available evidence on the cost–effectiveness of using these technologies for home-based chronic pain management.
However, the portability of VR/AR/MR enables use of these technologies in the delivery of home-based, pain
self-management interventions to decrease chronic pain and its negative effects.

VR/AR/MR technologies can serve as efficacious methods of delivering non-pharmacological interventions
for addressing treatment gaps in chronic pain management. Effective pain management must address psychoso-
cial and behavioral factors while promoting self-management in conjunction with pharmacological and physical
approaches [79,87]. VR/AR/MR technologies hold promise in addressing the various challenges that healthcare
providers and patients have experienced in achieving effective pain management. As more rigorous research is
conducted to evaluate the effectiveness of these technologies, data from such research can be used in support of
their widespread dissemination throughout healthcare systems and in patients’ homes.

Recommendations for practice
The following preliminary practice recommendations can be made:

• VR/AR/MR technologies can be effective methods for delivering interventions for chronic pain.
• VR/AR/MR-based interventions may be considered as a strategy to support home-based chronic pain man-

agement. This strategy may benefit historically marginalized individuals and those who live in locations where
access to in-person interventions is limited.

Recommendations for research
The following recommendations can be made for future research:

• RCTs are required to evaluate VR/AR/MR technologies, particularly for home-based chronic pain management.
There is a need for conducting more RCTs, with larger sample sizes, to generate data on a larger scale that can
inform health systems in adopting VR/AR/MR interventions.
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• Research should be conducted to evaluate the mechanisms of action of VR/AR/MR interventions for achieving
pain relief.
Further research is needed to identify and test specific mechanisms that result in pain relief from VR/AR/MR
use and how specific factors, such as the type of equipment, intervention dose, along with the level of immersion
and enjoyment of the VR/AR/MR environment, affect pain relief. This will require capturing patient-reported
outcomes and objective pain-related measures (e.g., imaging, blood-based biomarkers, and quantitative sensory
testing).

• Research should be conducted to explore the accessibility and cost-effectiveness of implementing VR/AR/MR-
based interventions, especially in the home setting.

• Research of VR/AR/MR technologies should be conducted in partnership with members of historically marginal-
ized groups, such as Black adults who experience chronic pain.

• Future VR/AR/MR programs should be tailored to the characteristics and needs of different patient groups.
Although extensive research has demonstrated the effects of distraction for reducing pain, there is a need for
further research that investigates tailored distraction techniques via VR/AR/MR in addressing different types
and subtypes of pain that encompass individual, procedural, interventional, contextual, and social factors [88].

• Future studies should also assess the effects of combining VR/AR/MR with evidence-based pain management
approaches such as CBT, mindfulness, and biofeedback.

• Future RCTs comparing VR/AR/MR with evidence-based pain management interventions should adhere to best
data reporting and evaluation practices, including those outlined by the Initiative on Methods, Measurement,
and Pain Assessment in Clinical Trials (IMMPACT).

Summary points

• Although the use of virtual, augmented, or mixed reality (VR/AR/MR) technology for chronic pain has increased,
there is a dearth of literature regarding the use and efficacy/effectiveness of these technologies.

• This review of 46 empirical studies included 19 randomized controlled trials (RCTs) (n = 1011 participants), 21
quasi-experimental studies (n = 413), 1 analytical cross-sectional study (n = 15), three case reports (n = 4), and two
pilot case series (n = 13), with a total of 1456 participants across all studies.

• Most of the included studies investigated VR, utilized immersive head-mounted displays, and did not include a
follow-up beyond the immediate post-intervention period.

• In most studies, VR was utilized to cope with chronic pain and associated psychosocial correlates or was
integrated into rehabilitation therapy.

• Efficacy/effectiveness outcomes included pain (46 studies) and pain-related outcomes (41 studies), such as
functional status, psychological correlates of pain, and pain interference in activities of daily living.

• VR/AR/MR technology was associated with a statistically significant reduction in pain intensity, phantom
sensations, or pain unpleasantness in 63% of the studies and a statistically significant improvement in various
pain-related outcomes in 52.2% of the studies. Among these studies, 78% of the 19 RCTs had improved
pain-related outcomes, with small to large effect sizes.

• In half of the 24 studies that evaluated the feasibility and/or acceptability of using VR for pain and/or
pain-related outcomes, most participants reported satisfaction or high satisfaction with the VR experience or
found VR to be an acceptable intervention for chronic pain.

• Adverse effects or negative side effects were reported in 33.3% of 24 studies and these effects were primarily
mild.

• The overall quality of the studies was moderate, with a low risk of bias for most studies. Of the 19 RCTs, one study
exhibited a moderate risk for bias, it was unclear if at least one criterion was met in 5 studies, and two studies did
not utilize true randomization. In the RCTs, there was a wide range of results of high to low certainty, with
overall low certainty reported.

• VR/AR/MR technology can be an effective method for delivering interventions for chronic pain.
• Clinical trials are needed to further evaluate VR/AR/MR technology for home-based chronic pain management,

mechanisms of action of VR/AR/MR interventions for achieving pain relief, and accessibility and cost-effectiveness
of implementing VR/AR/MR-based interventions, especially among members of historically marginalized groups.
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61. Solcà M, Ronchi R, Bello-Ruiz J et al. Heartbeat-enhanced immersive virtual reality to treat complex regional pain syndrome. Neurol.
91(5), e479–e489 (2018).

62. Trost Z, Anam M, Seward J et al. Immersive interactive virtual walking reduces neuropathic pain in spinal cord injury: findings from a
preliminary investigation of feasibility and clinical efficacy. Pain 163(2), 350–361 (2022).

63. Villiger M, Bohli D, Kiper D et al. Virtual reality–augmented neurorehabilitation improves motor function and reduces neuropathic
pain in patients with incomplete spinal cord injury. Neurorehabil Neural Repair. 27(8), 675–683 (2013).

64. Won AS, Barreau AC, Gaertner M et al. Assessing the feasibility of an open-source virtual reality mirror visual feedback module for
complex regional pain syndrome: pilot usability study. J Med Internet Res. 23(5), e16536 (2021).
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